Source File
arith.go
Belonging Package
math/big
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// This file provides Go implementations of elementary multi-precision// arithmetic operations on word vectors. These have the suffix _g.// These are needed for platforms without assembly implementations of these routines.// This file also contains elementary operations that can be implemented// sufficiently efficiently in Go.package bigimport// A Word represents a single digit of a multi-precision unsigned integer.type Word uintconst (_S = _W / 8 // word size in bytes_W = bits.UintSize // word size in bits_B = 1 << _W // digit base_M = _B - 1 // digit mask)// Many of the loops in this file are of the form// for i := 0; i < len(z) && i < len(x) && i < len(y); i++// i < len(z) is the real condition.// However, checking i < len(x) && i < len(y) as well is faster than// having the compiler do a bounds check in the body of the loop;// remarkably it is even faster than hoisting the bounds check// out of the loop, by doing something like// _, _ = x[len(z)-1], y[len(z)-1]// There are other ways to hoist the bounds check out of the loop,// but the compiler's BCE isn't powerful enough for them (yet?).// See the discussion in CL 164966.// ----------------------------------------------------------------------------// Elementary operations on words//// These operations are used by the vector operations below.// z1<<_W + z0 = x*yfunc (, Word) (, Word) {, := bits.Mul(uint(), uint())return Word(), Word()}// z1<<_W + z0 = x*y + cfunc (, , Word) (, Word) {, := bits.Mul(uint(), uint())var uint, = bits.Add(, uint(), 0)return Word( + ), Word()}// nlz returns the number of leading zeros in x.// Wraps bits.LeadingZeros call for convenience.func ( Word) uint {return uint(bits.LeadingZeros(uint()))}// The resulting carry c is either 0 or 1.func (, , []Word) ( Word) {// The comment near the top of this file discusses this for loop condition.for := 0; < len() && < len() && < len(); ++ {, := bits.Add(uint([]), uint([]), uint())[] = Word()= Word()}return}// The resulting carry c is either 0 or 1.func (, , []Word) ( Word) {// The comment near the top of this file discusses this for loop condition.for := 0; < len() && < len() && < len(); ++ {, := bits.Sub(uint([]), uint([]), uint())[] = Word()= Word()}return}// The resulting carry c is either 0 or 1.func (, []Word, Word) ( Word) {=// The comment near the top of this file discusses this for loop condition.for := 0; < len() && < len(); ++ {, := bits.Add(uint([]), uint(), 0)[] = Word()= Word()}return}// addVWlarge is addVW, but intended for large z.// The only difference is that we check on every iteration// whether we are done with carries,// and if so, switch to a much faster copy instead.// This is only a good idea for large z,// because the overhead of the check and the function call// outweigh the benefits when z is small.func (, []Word, Word) ( Word) {=// The comment near the top of this file discusses this for loop condition.for := 0; < len() && < len(); ++ {if == 0 {copy([:], [:])return}, := bits.Add(uint([]), uint(), 0)[] = Word()= Word()}return}func (, []Word, Word) ( Word) {=// The comment near the top of this file discusses this for loop condition.for := 0; < len() && < len(); ++ {, := bits.Sub(uint([]), uint(), 0)[] = Word()= Word()}return}// subVWlarge is to subVW as addVWlarge is to addVW.func (, []Word, Word) ( Word) {=// The comment near the top of this file discusses this for loop condition.for := 0; < len() && < len(); ++ {if == 0 {copy([:], [:])return}, := bits.Sub(uint([]), uint(), 0)[] = Word()= Word()}return}func (, []Word, uint) ( Word) {if == 0 {copy(, )return}if len() == 0 {return}&= _W - 1 // hint to the compiler that shifts by s don't need guard code:= _W -&= _W - 1 // ditto= [len()-1] >>for := len() - 1; > 0; -- {[] = []<< | [-1]>>}[0] = [0] <<return}func (, []Word, uint) ( Word) {if == 0 {copy(, )return}if len() == 0 {return}&= _W - 1 // hint to the compiler that shifts by s don't need guard code:= _W -&= _W - 1 // ditto= [0] <<for := 0; < len()-1; ++ {[] = []>> | [+1]<<}[len()-1] = [len()-1] >>return}func (, []Word, , Word) ( Word) {=// The comment near the top of this file discusses this for loop condition.for := 0; < len() && < len(); ++ {, [] = mulAddWWW_g([], , )}return}func (, []Word, Word) ( Word) {// The comment near the top of this file discusses this for loop condition.for := 0; < len() && < len(); ++ {, := mulAddWWW_g([], , []), := bits.Add(uint(), uint(), 0), [] = Word(), Word()+=}return}// q = ( x1 << _W + x0 - r)/y. m = floor(( _B^2 - 1 ) / d - _B). Requiring x1<y.// An approximate reciprocal with a reference to "Improved Division by Invariant Integers// (IEEE Transactions on Computers, 11 Jun. 2010)"func (, , , Word) (, Word) {:= nlz()if != 0 {= << | >>(_W-)<<=<<=}:= uint()// We know that// m = ⎣(B^2-1)/d⎦-B// ⎣(B^2-1)/d⎦ = m+B// (B^2-1)/d = m+B+delta1 0 <= delta1 <= (d-1)/d// B^2/d = m+B+delta2 0 <= delta2 <= 1// The quotient we're trying to compute is// quotient = ⎣(x1*B+x0)/d⎦// = ⎣(x1*B*(B^2/d)+x0*(B^2/d))/B^2⎦// = ⎣(x1*B*(m+B+delta2)+x0*(m+B+delta2))/B^2⎦// = ⎣(x1*m+x1*B+x0)/B + x0*m/B^2 + delta2*(x1*B+x0)/B^2⎦// The latter two terms of this three-term sum are between 0 and 1.// So we can compute just the first term, and we will be low by at most 2., := bits.Mul(uint(), uint()), := bits.Add(, uint(), 0), _ = bits.Add(, uint(), )// The quotient is either t1, t1+1, or t1+2.// We'll try t1 and adjust if needed.:=// compute remainder r=x-d*q., := bits.Mul(, ), := bits.Sub(uint(), , 0), := bits.Sub(uint(), , )// The remainder we just computed is bounded above by B+d:// r = x1*B + x0 - d*q.// = x1*B + x0 - d*⎣(x1*m+x1*B+x0)/B⎦// = x1*B + x0 - d*((x1*m+x1*B+x0)/B-alpha) 0 <= alpha < 1// = x1*B + x0 - x1*d/B*m - x1*d - x0*d/B + d*alpha// = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha// = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha// = x1*B + x0 - x1*d/B*((B^2-1)/d-B-beta) - x1*d - x0*d/B + d*alpha 0 <= beta < 1// = x1*B + x0 - x1*B + x1/B + x1*d + x1*d/B*beta - x1*d - x0*d/B + d*alpha// = x0 + x1/B + x1*d/B*beta - x0*d/B + d*alpha// = x0*(1-d/B) + x1*(1+d*beta)/B + d*alpha// < B*(1-d/B) + d*B/B + d because x0<B (and 1-d/B>0), x1<d, 1+d*beta<=B, alpha<1// = B - d + d + d// = B+d// So r1 can only be 0 or 1. If r1 is 1, then we know q was too small.// Add 1 to q and subtract d from r. That guarantees that r is <B, so// we no longer need to keep track of r1.if != 0 {++-=}// If the remainder is still too large, increment q one more time.if >= {++-=}return Word(), Word( >> )}func ( []Word, Word, []Word, Word) ( Word) {=if len() == 1 {, := bits.Div(uint(), uint([0]), uint())[0] = Word()return Word()}:= reciprocalWord()for := len() - 1; >= 0; -- {[], = divWW(, [], , )}return}// reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1).func ( Word) Word {:= uint( << nlz()):= ^:= uint(_M), := bits.Div(, , ) // (_B^2-1)/U-_B = (_B*(_M-C)+_M)/Ureturn Word()}