Source File
tanh.go
Belonging Package
math
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math// The original C code, the long comment, and the constants// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,// available from http://www.netlib.org/cephes/cmath.tgz.// The go code is a simplified version of the original C.// tanh.c//// Hyperbolic tangent//// SYNOPSIS://// double x, y, tanh();//// y = tanh( x );//// DESCRIPTION://// Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG.// MAXLOG = 8.8029691931113054295988e+01 = log(2**127)// MINLOG = -8.872283911167299960540e+01 = log(2**-128)//// A rational function is used for |x| < 0.625. The form// x + x**3 P(x)/Q(x) of Cody & Waite is employed.// Otherwise,// tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// IEEE -2,2 30000 2.5e-16 5.8e-17//// Cephes Math Library Release 2.8: June, 2000// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier//// The readme file at http://netlib.sandia.gov/cephes/ says:// Some software in this archive may be from the book _Methods and// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster// International, 1989) or from the Cephes Mathematical Library, a// commercial product. In either event, it is copyrighted by the author.// What you see here may be used freely but it comes with no support or// guarantee.//// The two known misprints in the book are repaired here in the// source listings for the gamma function and the incomplete beta// integral.//// Stephen L. Moshier// moshier@na-net.ornl.gov//var tanhP = [...]float64{-9.64399179425052238628e-1,-9.92877231001918586564e1,-1.61468768441708447952e3,}var tanhQ = [...]float64{1.12811678491632931402e2,2.23548839060100448583e3,4.84406305325125486048e3,}// Tanh returns the hyperbolic tangent of x.//// Special cases are:// Tanh(±0) = ±0// Tanh(±Inf) = ±1// Tanh(NaN) = NaNfunc ( float64) float64func ( float64) float64 {const = 8.8029691931113054295988e+01 // log(2**127):= Abs()switch {case > 0.5*:if < 0 {return -1}return 1case >= 0.625::= Exp(2 * )= 1 - 2/(+1)if < 0 {= -}default:if == 0 {return}:= *= + **((tanhP[0]*+tanhP[1])*+tanhP[2])/(((+tanhQ[0])*+tanhQ[1])*+tanhQ[2])}return}