// Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package strconvimport ()// An extFloat represents an extended floating-point number, with more// precision than a float64. It does not try to save bits: the// number represented by the structure is mant*(2^exp), with a negative// sign if neg is true.typeextFloatstruct { mant uint64 exp int neg bool}// Powers of ten taken from double-conversion library.// https://code.google.com/p/double-conversion/const (firstPowerOfTen = -348stepPowerOfTen = 8)varsmallPowersOfTen = [...]extFloat{ {1 << 63, -63, false}, // 1 {0xa << 60, -60, false}, // 1e1 {0x64 << 57, -57, false}, // 1e2 {0x3e8 << 54, -54, false}, // 1e3 {0x2710 << 50, -50, false}, // 1e4 {0x186a0 << 47, -47, false}, // 1e5 {0xf4240 << 44, -44, false}, // 1e6 {0x989680 << 40, -40, false}, // 1e7}varpowersOfTen = [...]extFloat{ {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 {0x8b16fb203055ac76, -1166, false}, // 10^-332 {0xcf42894a5dce35ea, -1140, false}, // 10^-324 {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 {0xe61acf033d1a45df, -1087, false}, // 10^-308 {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 {0xbe5691ef416bd60c, -1007, false}, // 10^-284 {0x8dd01fad907ffc3c, -980, false}, // 10^-276 {0xd3515c2831559a83, -954, false}, // 10^-268 {0x9d71ac8fada6c9b5, -927, false}, // 10^-260 {0xea9c227723ee8bcb, -901, false}, // 10^-252 {0xaecc49914078536d, -874, false}, // 10^-244 {0x823c12795db6ce57, -847, false}, // 10^-236 {0xc21094364dfb5637, -821, false}, // 10^-228 {0x9096ea6f3848984f, -794, false}, // 10^-220 {0xd77485cb25823ac7, -768, false}, // 10^-212 {0xa086cfcd97bf97f4, -741, false}, // 10^-204 {0xef340a98172aace5, -715, false}, // 10^-196 {0xb23867fb2a35b28e, -688, false}, // 10^-188 {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180 {0xc5dd44271ad3cdba, -635, false}, // 10^-172 {0x936b9fcebb25c996, -608, false}, // 10^-164 {0xdbac6c247d62a584, -582, false}, // 10^-156 {0xa3ab66580d5fdaf6, -555, false}, // 10^-148 {0xf3e2f893dec3f126, -529, false}, // 10^-140 {0xb5b5ada8aaff80b8, -502, false}, // 10^-132 {0x87625f056c7c4a8b, -475, false}, // 10^-124 {0xc9bcff6034c13053, -449, false}, // 10^-116 {0x964e858c91ba2655, -422, false}, // 10^-108 {0xdff9772470297ebd, -396, false}, // 10^-100 {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92 {0xf8a95fcf88747d94, -343, false}, // 10^-84 {0xb94470938fa89bcf, -316, false}, // 10^-76 {0x8a08f0f8bf0f156b, -289, false}, // 10^-68 {0xcdb02555653131b6, -263, false}, // 10^-60 {0x993fe2c6d07b7fac, -236, false}, // 10^-52 {0xe45c10c42a2b3b06, -210, false}, // 10^-44 {0xaa242499697392d3, -183, false}, // 10^-36 {0xfd87b5f28300ca0e, -157, false}, // 10^-28 {0xbce5086492111aeb, -130, false}, // 10^-20 {0x8cbccc096f5088cc, -103, false}, // 10^-12 {0xd1b71758e219652c, -77, false}, // 10^-4 {0x9c40000000000000, -50, false}, // 10^4 {0xe8d4a51000000000, -24, false}, // 10^12 {0xad78ebc5ac620000, 3, false}, // 10^20 {0x813f3978f8940984, 30, false}, // 10^28 {0xc097ce7bc90715b3, 56, false}, // 10^36 {0x8f7e32ce7bea5c70, 83, false}, // 10^44 {0xd5d238a4abe98068, 109, false}, // 10^52 {0x9f4f2726179a2245, 136, false}, // 10^60 {0xed63a231d4c4fb27, 162, false}, // 10^68 {0xb0de65388cc8ada8, 189, false}, // 10^76 {0x83c7088e1aab65db, 216, false}, // 10^84 {0xc45d1df942711d9a, 242, false}, // 10^92 {0x924d692ca61be758, 269, false}, // 10^100 {0xda01ee641a708dea, 295, false}, // 10^108 {0xa26da3999aef774a, 322, false}, // 10^116 {0xf209787bb47d6b85, 348, false}, // 10^124 {0xb454e4a179dd1877, 375, false}, // 10^132 {0x865b86925b9bc5c2, 402, false}, // 10^140 {0xc83553c5c8965d3d, 428, false}, // 10^148 {0x952ab45cfa97a0b3, 455, false}, // 10^156 {0xde469fbd99a05fe3, 481, false}, // 10^164 {0xa59bc234db398c25, 508, false}, // 10^172 {0xf6c69a72a3989f5c, 534, false}, // 10^180 {0xb7dcbf5354e9bece, 561, false}, // 10^188 {0x88fcf317f22241e2, 588, false}, // 10^196 {0xcc20ce9bd35c78a5, 614, false}, // 10^204 {0x98165af37b2153df, 641, false}, // 10^212 {0xe2a0b5dc971f303a, 667, false}, // 10^220 {0xa8d9d1535ce3b396, 694, false}, // 10^228 {0xfb9b7cd9a4a7443c, 720, false}, // 10^236 {0xbb764c4ca7a44410, 747, false}, // 10^244 {0x8bab8eefb6409c1a, 774, false}, // 10^252 {0xd01fef10a657842c, 800, false}, // 10^260 {0x9b10a4e5e9913129, 827, false}, // 10^268 {0xe7109bfba19c0c9d, 853, false}, // 10^276 {0xac2820d9623bf429, 880, false}, // 10^284 {0x80444b5e7aa7cf85, 907, false}, // 10^292 {0xbf21e44003acdd2d, 933, false}, // 10^300 {0x8e679c2f5e44ff8f, 960, false}, // 10^308 {0xd433179d9c8cb841, 986, false}, // 10^316 {0x9e19db92b4e31ba9, 1013, false}, // 10^324 {0xeb96bf6ebadf77d9, 1039, false}, // 10^332 {0xaf87023b9bf0ee6b, 1066, false}, // 10^340}// AssignComputeBounds sets f to the floating point value// defined by mant, exp and precision given by flt. It returns// lower, upper such that any number in the closed interval// [lower, upper] is converted back to the same floating point number.func ( *extFloat) ( uint64, int, bool, *floatInfo) (, extFloat) { .mant = .exp = - int(.mantbits) .neg = if .exp <= 0 && == (>>uint(-.exp))<<uint(-.exp) {// An exact integer .mant >>= uint(-.exp) .exp = 0return *, * } := - .bias = extFloat{mant: 2*.mant + 1, exp: .exp - 1, neg: .neg}if != 1<<.mantbits || == 1 { = extFloat{mant: 2*.mant - 1, exp: .exp - 1, neg: .neg} } else { = extFloat{mant: 4*.mant - 1, exp: .exp - 2, neg: .neg} }return}// Normalize normalizes f so that the highest bit of the mantissa is// set, and returns the number by which the mantissa was left-shifted.func ( *extFloat) () uint {// bits.LeadingZeros64 would return 64if .mant == 0 {return0 } := bits.LeadingZeros64(.mant) .mant <<= uint() .exp -= returnuint()}// Multiply sets f to the product f*g: the result is correctly rounded,// but not normalized.func ( *extFloat) ( extFloat) { , := bits.Mul64(.mant, .mant)// Round up. .mant = + ( >> 63) .exp = .exp + .exp + 64}varuint64pow10 = [...]uint64{1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,}// Frexp10 is an analogue of math.Frexp for decimal powers. It scales// f by an approximate power of ten 10^-exp, and returns exp10, so// that f*10^exp10 has the same value as the old f, up to an ulp,// as well as the index of 10^-exp in the powersOfTen table.func ( *extFloat) () (, int) {// The constants expMin and expMax constrain the final value of the // binary exponent of f. We want a small integral part in the result // because finding digits of an integer requires divisions, whereas // digits of the fractional part can be found by repeatedly multiplying // by 10.const = -60const = -32// Find power of ten such that x * 10^n has a binary exponent // between expMin and expMax. := ((+)/2 - .exp) * 28 / 93// log(10)/log(2) is close to 93/28. := ( - firstPowerOfTen) / stepPowerOfTen:for { := .exp + powersOfTen[].exp + 64switch {case < : ++case > : --default:break } }// Apply the desired decimal shift on f. It will have exponent // in the desired range. This is multiplication by 10^-exp10. .Multiply(powersOfTen[])return -(firstPowerOfTen + *stepPowerOfTen), }// frexp10Many applies a common shift by a power of ten to a, b, c.func (, , *extFloat) ( int) { , := .frexp10() .Multiply(powersOfTen[]) .Multiply(powersOfTen[])return}// FixedDecimal stores in d the first n significant digits// of the decimal representation of f. It returns false// if it cannot be sure of the answer.func ( *extFloat) ( *decimalSlice, int) bool {if .mant == 0 { .nd = 0 .dp = 0 .neg = .negreturntrue }if == 0 {panic("strconv: internal error: extFloat.FixedDecimal called with n == 0") }// Multiply by an appropriate power of ten to have a reasonable // number to process. .Normalize() , := .frexp10() := uint(-.exp) := uint32(.mant >> ) := .mant - (uint64() << ) := uint64(1) // ε is the uncertainty we have on the mantissa of f.// Write exactly n digits to d. := // how many digits are left to write. := 0// the number of decimal digits of integer. := uint64(1) // the power of ten by which f was scaled.for , := 0, uint64(1); < 20; ++ {if > uint64() { = break } *= 10 } := if > {// the integral part is already large, trim the last digits. = uint64pow10[-] /= uint32() -= * uint32() } else { = 0 }// Write the digits of integer: the digits of rest are omitted.var [32]byte := len()for := ; > 0; { := / 10 -= 10 * -- [] = byte( + '0') = }for := ; < len(); ++ { .d[-] = [] } := len() - .nd = .dp = + -= if > 0 {if != 0 || != 1 {panic("strconv: internal error, rest != 0 but needed > 0") }// Emit digits for the fractional part. Each time, 10*fraction // fits in a uint64 without overflow.for > 0 { *= 10 *= 10// the uncertainty scales as we multiply by ten.if2* > 1<< {// the error is so large it could modify which digit to write, abort.returnfalse } := >> .d[] = byte( + '0') -= << ++ -- } .nd = }// We have written a truncation of f (a numerator / 10^d.dp). The remaining part // can be interpreted as a small number (< 1) to be added to the last digit of the // numerator. // // If rest > 0, the amount is: // (rest<<shift | fraction) / (pow10 << shift) // fraction being known with a ±ε uncertainty. // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64. // // If rest = 0, pow10 == 1 and the amount is // fraction / (1 << shift) // fraction being known with a ±ε uncertainty. // // We pass this information to the rounding routine for adjustment. := adjustLastDigitFixed(, uint64()<<|, , , )if ! {returnfalse }// Trim trailing zeros.for := .nd - 1; >= 0; -- {if .d[] != '0' { .nd = + 1break } }returntrue}// adjustLastDigitFixed assumes d contains the representation of the integral part// of some number, whose fractional part is num / (den << shift). The numerator// num is only known up to an uncertainty of size ε, assumed to be less than// (den << shift)/2.//// It will increase the last digit by one to account for correct rounding, typically// when the fractional part is greater than 1/2, and will return false if ε is such// that no correct answer can be given.func ( *decimalSlice, , uint64, uint, uint64) bool {if > << {panic("strconv: num > den<<shift in adjustLastDigitFixed") }if2* > << {panic("strconv: ε > (den<<shift)/2") }if2*(+) < << {returntrue }if2*(-) > << {// increment d by 1. := .nd - 1for ; >= 0; -- {if .d[] == '9' { .nd-- } else {break } }if < 0 { .d[0] = '1' .nd = 1 .dp++ } else { .d[]++ }returntrue }returnfalse}// ShortestDecimal stores in d the shortest decimal representation of f// which belongs to the open interval (lower, upper), where f is supposed// to lie. It returns false whenever the result is unsure. The implementation// uses the Grisu3 algorithm.func ( *extFloat) ( *decimalSlice, , *extFloat) bool {if .mant == 0 { .nd = 0 .dp = 0 .neg = .negreturntrue }if .exp == 0 && * == * && * == * {// an exact integer.var [24]byte := len() - 1for := .mant; > 0; { := / 10 -= 10 * [] = byte( + '0') -- = } := len() - - 1for := 0; < ; ++ { .d[] = [+1+] } .nd, .dp = , for .nd > 0 && .d[.nd-1] == '0' { .nd-- }if .nd == 0 { .dp = 0 } .neg = .negreturntrue } .Normalize()// Uniformize exponents.if .exp > .exp { .mant <<= uint(.exp - .exp) .exp = .exp }if .exp > .exp { .mant <<= uint(.exp - .exp) .exp = .exp } := frexp10Many(, , )// Take a safety margin due to rounding in frexp10Many, but we lose precision. .mant++ .mant--// The shortest representation of f is either rounded up or down, but // in any case, it is a truncation of upper. := uint(-.exp) := uint32(.mant >> ) := .mant - (uint64() << )// How far we can go down from upper until the result is wrong. := .mant - .mant// How far we should go to get a very precise result. := .mant - .mant// Count integral digits: there are at most 10.varintfor , := 0, uint64(1); < 20; ++ {if > uint64() { = break } *= 10 }for := 0; < ; ++ { := uint64pow10[--1] := / uint32() .d[] = byte( + '0') -= * uint32()// evaluate whether we should stop.if := uint64()<< + ; < { .nd = + 1 .dp = + .neg = .neg// Sometimes allowance is so large the last digit might need to be // decremented to get closer to f.returnadjustLastDigit(, , , , <<, 2) } } .nd = .dp = .nd + .neg = .neg// Compute digits of the fractional part. At each step fraction does not // overflow. The choice of minExp implies that fraction is less than 2^60.varint := uint64(1)for { *= 10 *= 10 = int( >> ) .d[.nd] = byte( + '0') .nd++ -= uint64() << if < * {// We are in the admissible range. Note that if allowance is about to // overflow, that is, allowance > 2^64/10, the condition is automatically // true due to the limited range of fraction.returnadjustLastDigit(, , *, *,1<<, *2) } }}// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.// It assumes that a decimal digit is worth ulpDecimal*ε, and that// all data is known with an error estimate of ulpBinary*ε.func ( *decimalSlice, , , , , uint64) bool {if < 2* {// Approximation is too wide.returnfalse }for +/2+ < { .d[.nd-1]-- += }if + <= +/2+ {// we have two choices, and don't know what to do.returnfalse }if < || > - {// we went too farreturnfalse }if .nd == 1 && .d[0] == '0' {// the number has actually reached zero. .nd = 0 .dp = 0 }returntrue}