// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.
// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017.//// RSA is a single, fundamental operation that is used in this package to// implement either public-key encryption or public-key signatures.//// The original specification for encryption and signatures with RSA is PKCS #1// and the terms "RSA encryption" and "RSA signatures" by default refer to// PKCS #1 version 1.5. However, that specification has flaws and new designs// should use version 2, usually called by just OAEP and PSS, where// possible.//// Two sets of interfaces are included in this package. When a more abstract// interface isn't necessary, there are functions for encrypting/decrypting// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract// over the public key primitive, the PrivateKey type implements the// Decrypter and Signer interfaces from the crypto package.//// The RSA operations in this package are not implemented using constant-time algorithms.
package rsaimport ()varbigZero = big.NewInt(0)varbigOne = big.NewInt(1)// A PublicKey represents the public part of an RSA key.typePublicKeystruct { N *big.Int// modulus E int// public exponent}// Any methods implemented on PublicKey might need to also be implemented on// PrivateKey, as the latter embeds the former and will expose its methods.// Size returns the modulus size in bytes. Raw signatures and ciphertexts// for or by this public key will have the same size.func ( *PublicKey) () int {return (.N.BitLen() + 7) / 8}// Equal reports whether pub and x have the same value.func ( *PublicKey) ( crypto.PublicKey) bool { , := .(*PublicKey)if ! {returnfalse }return .N.Cmp(.N) == 0 && .E == .E}// OAEPOptions is an interface for passing options to OAEP decryption using the// crypto.Decrypter interface.typeOAEPOptionsstruct {// Hash is the hash function that will be used when generating the mask. Hash crypto.Hash// Label is an arbitrary byte string that must be equal to the value // used when encrypting. Label []byte}var (errPublicModulus = errors.New("crypto/rsa: missing public modulus")errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large"))// checkPub sanity checks the public key before we use it.// We require pub.E to fit into a 32-bit integer so that we// do not have different behavior depending on whether// int is 32 or 64 bits. See also// https://www.imperialviolet.org/2012/03/16/rsae.html.func ( *PublicKey) error {if .N == nil {returnerrPublicModulus }if .E < 2 {returnerrPublicExponentSmall }if .E > 1<<31-1 {returnerrPublicExponentLarge }returnnil}// A PrivateKey represents an RSA keytypePrivateKeystruct {PublicKey// public part. D *big.Int// private exponent Primes []*big.Int// prime factors of N, has >= 2 elements.// Precomputed contains precomputed values that speed up private // operations, if available. Precomputed PrecomputedValues}// Public returns the public key corresponding to priv.func ( *PrivateKey) () crypto.PublicKey {return &.PublicKey}// Equal reports whether priv and x have equivalent values. It ignores// Precomputed values.func ( *PrivateKey) ( crypto.PrivateKey) bool { , := .(*PrivateKey)if ! {returnfalse }if !.PublicKey.Equal(&.PublicKey) || .D.Cmp(.D) != 0 {returnfalse }iflen(.Primes) != len(.Primes) {returnfalse }for := range .Primes {if .Primes[].Cmp(.Primes[]) != 0 {returnfalse } }returntrue}// Sign signs digest with priv, reading randomness from rand. If opts is a// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will// be used. digest must be the result of hashing the input message using// opts.HashFunc().//// This method implements crypto.Signer, which is an interface to support keys// where the private part is kept in, for example, a hardware module. Common// uses should use the Sign* functions in this package directly.func ( *PrivateKey) ( io.Reader, []byte, crypto.SignerOpts) ([]byte, error) {if , := .(*PSSOptions); {returnSignPSS(, , .Hash, , ) }returnSignPKCS1v15(, , .HashFunc(), )}// Decrypt decrypts ciphertext with priv. If opts is nil or of type// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise// opts must have type *OAEPOptions and OAEP decryption is done.func ( *PrivateKey) ( io.Reader, []byte, crypto.DecrypterOpts) ( []byte, error) {if == nil {returnDecryptPKCS1v15(, , ) }switch opts := .(type) {case *OAEPOptions:returnDecryptOAEP(.Hash.New(), , , , .Label)case *PKCS1v15DecryptOptions:if := .SessionKeyLen; > 0 { = make([]byte, )if , := io.ReadFull(, ); != nil {returnnil, }if := DecryptPKCS1v15SessionKey(, , , ); != nil {returnnil, }return , nil } else {returnDecryptPKCS1v15(, , ) }default:returnnil, errors.New("crypto/rsa: invalid options for Decrypt") }}typePrecomputedValuesstruct { Dp, Dq *big.Int// D mod (P-1) (or mod Q-1) Qinv *big.Int// Q^-1 mod P// CRTValues is used for the 3rd and subsequent primes. Due to a // historical accident, the CRT for the first two primes is handled // differently in PKCS #1 and interoperability is sufficiently // important that we mirror this. CRTValues []CRTValue}// CRTValue contains the precomputed Chinese remainder theorem values.typeCRTValuestruct { Exp *big.Int// D mod (prime-1). Coeff *big.Int// R·Coeff ≡ 1 mod Prime. R *big.Int// product of primes prior to this (inc p and q).}// Validate performs basic sanity checks on the key.// It returns nil if the key is valid, or else an error describing a problem.func ( *PrivateKey) () error {if := checkPub(&.PublicKey); != nil {return }// Check that Πprimes == n. := new(big.Int).Set(bigOne)for , := range .Primes {// Any primes ≤ 1 will cause divide-by-zero panics later.if .Cmp(bigOne) <= 0 {returnerrors.New("crypto/rsa: invalid prime value") } .Mul(, ) }if .Cmp(.N) != 0 {returnerrors.New("crypto/rsa: invalid modulus") }// Check that de ≡ 1 mod p-1, for each prime. // This implies that e is coprime to each p-1 as e has a multiplicative // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. := new(big.Int) := new(big.Int).SetInt64(int64(.E)) .Mul(, .D)for , := range .Primes { := new(big.Int).Sub(, bigOne) .Mod(, )if .Cmp(bigOne) != 0 {returnerrors.New("crypto/rsa: invalid exponents") } }returnnil}// GenerateKey generates an RSA keypair of the given bit size using the// random source random (for example, crypto/rand.Reader).func ( io.Reader, int) (*PrivateKey, error) {returnGenerateMultiPrimeKey(, 2, )}// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit// size and the given random source, as suggested in [1]. Although the public// keys are compatible (actually, indistinguishable) from the 2-prime case,// the private keys are not. Thus it may not be possible to export multi-prime// private keys in certain formats or to subsequently import them into other// code.//// Table 1 in [2] suggests maximum numbers of primes for a given size.//// [1] US patent 4405829 (1972, expired)// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdffunc ( io.Reader, int, int) (*PrivateKey, error) {randutil.MaybeReadByte() := new(PrivateKey) .E = 65537if < 2 {returnnil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") }if < 64 { := float64(uint64(1) << uint(/))// pi approximates the number of primes less than primeLimit := / (math.Log() - 1)// Generated primes start with 11 (in binary) so we can only // use a quarter of them. /= 4// Use a factor of two to ensure that key generation terminates // in a reasonable amount of time. /= 2if <= float64() {returnnil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") } } := make([]*big.Int, ):for { := // crypto/rand should set the top two bits in each prime. // Thus each prime has the form // p_i = 2^bitlen(p_i) × 0.11... (in base 2). // And the product is: // P = 2^todo × α // where α is the product of nprimes numbers of the form 0.11... // // If α < 1/2 (which can happen for nprimes > 2), we need to // shift todo to compensate for lost bits: the mean value of 0.11... // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 // will give good results.if >= 7 { += ( - 2) / 5 }for := 0; < ; ++ {varerror [], = rand.Prime(, /(-))if != nil {returnnil, } -= [].BitLen() }// Make sure that primes is pairwise unequal.for , := range {for := 0; < ; ++ {if .Cmp([]) == 0 {continue } } } := new(big.Int).Set(bigOne) := new(big.Int).Set(bigOne) := new(big.Int)for , := range { .Mul(, ) .Sub(, bigOne) .Mul(, ) }if .BitLen() != {// This should never happen for nprimes == 2 because // crypto/rand should set the top two bits in each prime. // For nprimes > 2 we hope it does not happen often.continue } .D = new(big.Int) := big.NewInt(int64(.E)) := .D.ModInverse(, )if != nil { .Primes = .N = break } } .Precompute()return , nil}// incCounter increments a four byte, big-endian counter.func ( *[4]byte) {if [3]++; [3] != 0 {return }if [2]++; [2] != 0 {return }if [1]++; [1] != 0 {return } [0]++}// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function// specified in PKCS #1 v2.1.func ( []byte, hash.Hash, []byte) {var [4]bytevar []byte := 0for < len() { .Write() .Write([0:4]) = .Sum([:0]) .Reset()for := 0; < len() && < len(); ++ { [] ^= [] ++ }incCounter(&) }}// ErrMessageTooLong is returned when attempting to encrypt a message which is// too large for the size of the public key.varErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")func ( *big.Int, *PublicKey, *big.Int) *big.Int { := big.NewInt(int64(.E)) .Exp(, , .N)return}// EncryptOAEP encrypts the given message with RSA-OAEP.//// OAEP is parameterised by a hash function that is used as a random oracle.// Encryption and decryption of a given message must use the same hash function// and sha256.New() is a reasonable choice.//// The random parameter is used as a source of entropy to ensure that// encrypting the same message twice doesn't result in the same ciphertext.//// The label parameter may contain arbitrary data that will not be encrypted,// but which gives important context to the message. For example, if a given// public key is used to decrypt two types of messages then distinct label// values could be used to ensure that a ciphertext for one purpose cannot be// used for another by an attacker. If not required it can be empty.//// The message must be no longer than the length of the public modulus minus// twice the hash length, minus a further 2.func ( hash.Hash, io.Reader, *PublicKey, []byte, []byte) ([]byte, error) {if := checkPub(); != nil {returnnil, } .Reset() := .Size()iflen() > -2*.Size()-2 {returnnil, ErrMessageTooLong } .Write() := .Sum(nil) .Reset() := make([]byte, ) := [1 : 1+.Size()] := [1+.Size():]copy([0:.Size()], ) [len()-len()-1] = 1copy([len()-len():], ) , := io.ReadFull(, )if != nil {returnnil, }mgf1XOR(, , )mgf1XOR(, , ) := new(big.Int) .SetBytes() := encrypt(new(big.Int), , ) := make([]byte, )return .FillBytes(), nil}// ErrDecryption represents a failure to decrypt a message.// It is deliberately vague to avoid adaptive attacks.varErrDecryption = errors.New("crypto/rsa: decryption error")// ErrVerification represents a failure to verify a signature.// It is deliberately vague to avoid adaptive attacks.varErrVerification = errors.New("crypto/rsa: verification error")// Precompute performs some calculations that speed up private key operations// in the future.func ( *PrivateKey) () {if .Precomputed.Dp != nil {return } .Precomputed.Dp = new(big.Int).Sub(.Primes[0], bigOne) .Precomputed.Dp.Mod(.D, .Precomputed.Dp) .Precomputed.Dq = new(big.Int).Sub(.Primes[1], bigOne) .Precomputed.Dq.Mod(.D, .Precomputed.Dq) .Precomputed.Qinv = new(big.Int).ModInverse(.Primes[1], .Primes[0]) := new(big.Int).Mul(.Primes[0], .Primes[1]) .Precomputed.CRTValues = make([]CRTValue, len(.Primes)-2)for := 2; < len(.Primes); ++ { := .Primes[] := &.Precomputed.CRTValues[-2] .Exp = new(big.Int).Sub(, bigOne) .Exp.Mod(.D, .Exp) .R = new(big.Int).Set() .Coeff = new(big.Int).ModInverse(, ) .Mul(, ) }}// decrypt performs an RSA decryption, resulting in a plaintext integer. If a// random source is given, RSA blinding is used.func ( io.Reader, *PrivateKey, *big.Int) ( *big.Int, error) {// TODO(agl): can we get away with reusing blinds?if .Cmp(.N) > 0 { = ErrDecryptionreturn }if .N.Sign() == 0 {returnnil, ErrDecryption }var *big.Intif != nil {randutil.MaybeReadByte()// Blinding enabled. Blinding involves multiplying c by r^e. // Then the decryption operation performs (m^e * r^e)^d mod n // which equals mr mod n. The factor of r can then be removed // by multiplying by the multiplicative inverse of r.var *big.Int = new(big.Int)for { , = rand.Int(, .N)if != nil {return }if .Cmp(bigZero) == 0 { = bigOne } := .ModInverse(, .N)if != nil {break } } := big.NewInt(int64(.E)) := new(big.Int).Exp(, , .N) // N != 0 := new(big.Int).Set() .Mul(, ) .Mod(, .N) = }if .Precomputed.Dp == nil { = new(big.Int).Exp(, .D, .N) } else {// We have the precalculated values needed for the CRT. = new(big.Int).Exp(, .Precomputed.Dp, .Primes[0]) := new(big.Int).Exp(, .Precomputed.Dq, .Primes[1]) .Sub(, )if .Sign() < 0 { .Add(, .Primes[0]) } .Mul(, .Precomputed.Qinv) .Mod(, .Primes[0]) .Mul(, .Primes[1]) .Add(, )for , := range .Precomputed.CRTValues { := .Primes[2+] .Exp(, .Exp, ) .Sub(, ) .Mul(, .Coeff) .Mod(, )if .Sign() < 0 { .Add(, ) } .Mul(, .R) .Add(, ) } }if != nil {// Unblind. .Mul(, ) .Mod(, .N) }return}func ( io.Reader, *PrivateKey, *big.Int) ( *big.Int, error) { , = decrypt(, , )if != nil {returnnil, }// In order to defend against errors in the CRT computation, m^e is // calculated, which should match the original ciphertext. := encrypt(new(big.Int), &.PublicKey, )if .Cmp() != 0 {returnnil, errors.New("rsa: internal error") }return , nil}// DecryptOAEP decrypts ciphertext using RSA-OAEP.//// OAEP is parameterised by a hash function that is used as a random oracle.// Encryption and decryption of a given message must use the same hash function// and sha256.New() is a reasonable choice.//// The random parameter, if not nil, is used to blind the private-key operation// and avoid timing side-channel attacks. Blinding is purely internal to this// function – the random data need not match that used when encrypting.//// The label parameter must match the value given when encrypting. See// EncryptOAEP for details.func ( hash.Hash, io.Reader, *PrivateKey, []byte, []byte) ([]byte, error) {if := checkPub(&.PublicKey); != nil {returnnil, } := .Size()iflen() > || < .Size()*2+2 {returnnil, ErrDecryption } := new(big.Int).SetBytes() , := decrypt(, , )if != nil {returnnil, } .Write() := .Sum(nil) .Reset()// We probably leak the number of leading zeros. // It's not clear that we can do anything about this. := .FillBytes(make([]byte, )) := subtle.ConstantTimeByteEq([0], 0) := [1 : .Size()+1] := [.Size()+1:]mgf1XOR(, , )mgf1XOR(, , ) := [0:.Size()]// We have to validate the plaintext in constant time in order to avoid // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 // v2.0. In J. Kilian, editor, Advances in Cryptology. := subtle.ConstantTimeCompare(, )// The remainder of the plaintext must be zero or more 0x00, followed // by 0x01, followed by the message. // lookingForIndex: 1 iff we are still looking for the 0x01 // index: the offset of the first 0x01 byte // invalid: 1 iff we saw a non-zero byte before the 0x01.var , , int = 1 := [.Size():]for := 0; < len(); ++ { := subtle.ConstantTimeByteEq([], 0) := subtle.ConstantTimeByteEq([], 1) = subtle.ConstantTimeSelect(&, , ) = subtle.ConstantTimeSelect(, 0, ) = subtle.ConstantTimeSelect(&^, 1, ) }if &&^&^ != 1 {returnnil, ErrDecryption }return [+1:], nil}