Source File
log.go
Belonging Package
math
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math/*Floating-point logarithm.*/// The original C code, the long comment, and the constants// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c// and came with this notice. The go code is a simpler// version of the original C.//// ====================================================// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.//// Developed at SunPro, a Sun Microsystems, Inc. business.// Permission to use, copy, modify, and distribute this// software is freely granted, provided that this notice// is preserved.// ====================================================//// __ieee754_log(x)// Return the logarithm of x//// Method :// 1. Argument Reduction: find k and f such that// x = 2**k * (1+f),// where sqrt(2)/2 < 1+f < sqrt(2) .//// 2. Approximation of log(1+f).// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)// = 2s + 2/3 s**3 + 2/5 s**5 + .....,// = 2s + s*R// We use a special Reme algorithm on [0,0.1716] to generate// a polynomial of degree 14 to approximate R. The maximum error// of this polynomial approximation is bounded by 2**-58.45. In// other words,// 2 4 6 8 10 12 14// R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s// (the values of L1 to L7 are listed in the program) and// | 2 14 | -58.45// | L1*s +...+L7*s - R(z) | <= 2// | |// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.// In order to guarantee error in log below 1ulp, we compute log by// log(1+f) = f - s*(f - R) (if f is not too large)// log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)//// 3. Finally, log(x) = k*Ln2 + log(1+f).// = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))// Here Ln2 is split into two floating point number:// Ln2_hi + Ln2_lo,// where n*Ln2_hi is always exact for |n| < 2000.//// Special cases:// log(x) is NaN with signal if x < 0 (including -INF) ;// log(+INF) is +INF; log(0) is -INF with signal;// log(NaN) is that NaN with no signal.//// Accuracy:// according to an error analysis, the error is always less than// 1 ulp (unit in the last place).//// Constants:// The hexadecimal values are the intended ones for the following// constants. The decimal values may be used, provided that the// compiler will convert from decimal to binary accurately enough// to produce the hexadecimal values shown.// Log returns the natural logarithm of x.//// Special cases are:// Log(+Inf) = +Inf// Log(0) = -Inf// Log(x < 0) = NaN// Log(NaN) = NaNfunc ( float64) float64func ( float64) float64 {const (= 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */= 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */= 6.666666666666735130e-01 /* 3FE55555 55555593 */= 3.999999999940941908e-01 /* 3FD99999 9997FA04 */= 2.857142874366239149e-01 /* 3FD24924 94229359 */= 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */= 1.818357216161805012e-01 /* 3FC74664 96CB03DE */= 1.531383769920937332e-01 /* 3FC39A09 D078C69F */= 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */)// special casesswitch {case IsNaN() || IsInf(, 1):returncase < 0:return NaN()case == 0:return Inf(-1)}// reduce, := Frexp()if < Sqrt2/2 {*= 2--}:= - 1:= float64()// compute:= / (2 + ):= *:= *:= * ( + *(+*(+*))):= * ( + *(+*)):= +:= 0.5 * *return * - (( - (*(+) + *)) - )}