Source File
sqrt.go
Belonging Package
math/big
// Copyright 2017 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package bigimport ()var threeOnce struct {sync.Oncev *Float}func () *Float {threeOnce.Do(func() {threeOnce.v = NewFloat(3.0)})return threeOnce.v}// Sqrt sets z to the rounded square root of x, and returns it.//// If z's precision is 0, it is changed to x's precision before the// operation. Rounding is performed according to z's precision and// rounding mode, but z's accuracy is not computed. Specifically, the// result of z.Acc() is undefined.//// The function panics if z < 0. The value of z is undefined in that// case.func ( *Float) ( *Float) *Float {if debugFloat {.validate()}if .prec == 0 {.prec = .prec}if .Sign() == -1 {// following IEEE754-2008 (section 7.2)panic(ErrNaN{"square root of negative operand"})}// handle ±0 and +∞if .form != finite {.acc = Exact.form = .form.neg = .neg // IEEE754-2008 requires √±0 = ±0return}// MantExp sets the argument's precision to the receiver's, and// when z.prec > x.prec this will lower z.prec. Restore it after// the MantExp call.:= .prec:= .MantExp().prec =// Compute √(z·2**b) as// √( z)·2**(½b) if b is even// √(2z)·2**(⌊½b⌋) if b > 0 is odd// √(½z)·2**(⌈½b⌉) if b < 0 is oddswitch % 2 {case 0:// nothing to docase 1:.exp++case -1:.exp--}// 0.25 <= z < 2.0// Solving 1/x² - z = 0 avoids Quo calls and is faster, especially// for high precisions..sqrtInverse()// re-attach halved exponentreturn .SetMantExp(, /2)}// Compute √x (to z.prec precision) by solving// 1/t² - x = 0// for t (using Newton's method), and then inverting.func ( *Float) ( *Float) {// let// f(t) = 1/t² - x// then// g(t) = f(t)/f'(t) = -½t(1 - xt²)// and the next guess is given by// t2 = t - g(t) = ½t(3 - xt²):= newFloat(.prec):= newFloat(.prec):= three():= func( *Float) *Float {.prec = .prec.prec = .prec.Mul(, ) // u = t².Mul(, ) // = xt².Sub(, ) // v = 3 - xt².Mul(, ) // u = t(3 - xt²).exp-- // = ½t(3 - xt²)return .Set()}, := .Float64():= newFloat(.prec).SetFloat64(1 / math.Sqrt())for := .prec + 32; .prec < ; {.prec *= 2= ()}// sqi = 1/√x// x/√x = √x.Mul(, )}// newFloat returns a new *Float with space for twice the given// precision.func ( uint32) *Float {:= new(Float)// nat.make ensures the slice length is > 0.mant = .mant.make(int(/_W) * 2)return}