Source File
log1p.go
Belonging Package
math
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math// The original C code, the long comment, and the constants// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c// and came with this notice. The go code is a simplified// version of the original C.//// ====================================================// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.//// Developed at SunPro, a Sun Microsystems, Inc. business.// Permission to use, copy, modify, and distribute this// software is freely granted, provided that this notice// is preserved.// ====================================================////// double log1p(double x)//// Method :// 1. Argument Reduction: find k and f such that// 1+x = 2**k * (1+f),// where sqrt(2)/2 < 1+f < sqrt(2) .//// Note. If k=0, then f=x is exact. However, if k!=0, then f// may not be representable exactly. In that case, a correction// term is need. Let u=1+x rounded. Let c = (1+x)-u, then// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),// and add back the correction term c/u.// (Note: when x > 2**53, one can simply return log(x))//// 2. Approximation of log1p(f).// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)// = 2s + 2/3 s**3 + 2/5 s**5 + .....,// = 2s + s*R// We use a special Reme algorithm on [0,0.1716] to generate// a polynomial of degree 14 to approximate R The maximum error// of this polynomial approximation is bounded by 2**-58.45. In// other words,// 2 4 6 8 10 12 14// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s// (the values of Lp1 to Lp7 are listed in the program)// and// | 2 14 | -58.45// | Lp1*s +...+Lp7*s - R(z) | <= 2// | |// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.// In order to guarantee error in log below 1ulp, we compute log// by// log1p(f) = f - (hfsq - s*(hfsq+R)).//// 3. Finally, log1p(x) = k*ln2 + log1p(f).// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))// Here ln2 is split into two floating point number:// ln2_hi + ln2_lo,// where n*ln2_hi is always exact for |n| < 2000.//// Special cases:// log1p(x) is NaN with signal if x < -1 (including -INF) ;// log1p(+INF) is +INF; log1p(-1) is -INF with signal;// log1p(NaN) is that NaN with no signal.//// Accuracy:// according to an error analysis, the error is always less than// 1 ulp (unit in the last place).//// Constants:// The hexadecimal values are the intended ones for the following// constants. The decimal values may be used, provided that the// compiler will convert from decimal to binary accurately enough// to produce the hexadecimal values shown.//// Note: Assuming log() return accurate answer, the following// algorithm can be used to compute log1p(x) to within a few ULP://// u = 1+x;// if(u==1.0) return x ; else// return log(u)*(x/(u-1.0));//// See HP-15C Advanced Functions Handbook, p.193.// Log1p returns the natural logarithm of 1 plus its argument x.// It is more accurate than Log(1 + x) when x is near zero.//// Special cases are:// Log1p(+Inf) = +Inf// Log1p(±0) = ±0// Log1p(-1) = -Inf// Log1p(x < -1) = NaN// Log1p(NaN) = NaNfunc ( float64) float64func ( float64) float64 {const (= 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34= -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866= 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000= 1.0 / (1 << 54) // 2**-54= 1 << 53 // 2**53= 6.93147180369123816490e-01 // 3fe62e42fee00000= 1.90821492927058770002e-10 // 3dea39ef35793c76= 6.666666666666735130e-01 // 3FE5555555555593= 3.999999999940941908e-01 // 3FD999999997FA04= 2.857142874366239149e-01 // 3FD2492494229359= 2.222219843214978396e-01 // 3FCC71C51D8E78AF= 1.818357216161805012e-01 // 3FC7466496CB03DE= 1.531383769920937332e-01 // 3FC39A09D078C69F= 1.479819860511658591e-01 // 3FC2F112DF3E5244)// special casesswitch {case < -1 || IsNaN(): // includes -Infreturn NaN()case == -1:return Inf(-1)case IsInf(, 1):return Inf(1)}:= Abs()var float64var uint64:= 1if < { // |x| < Sqrt(2)-1if < { // |x| < 2**-29if < { // |x| < 2**-54return}return - **0.5}if > { // Sqrt(2)/2-1 < x// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)= 0== 1}}var float64if != 0 {var float64if < { // 1<<53= 1.0 += Float64bits()= int(( >> 52) - 1023)// correction termif > 0 {= 1.0 - ( - )} else {= - ( - 1.0)}/=} else {== Float64bits()= int(( >> 52) - 1023)= 0}&= 0x000fffffffffffffif < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)= Float64frombits( | 0x3ff0000000000000) // normalize u} else {++= Float64frombits( | 0x3fe0000000000000) // normalize u/2= (0x0010000000000000 - ) >> 2}= - 1.0 // Sqrt(2)/2 < u < Sqrt(2)}:= 0.5 * *var , , float64if == 0 { // |f| < 2**-20if == 0 {if == 0 {return 0}+= float64() *return float64()* +}= * (1.0 - 0.66666666666666666*) // avoid divisionif == 0 {return -}return float64()* - (( - (float64()* + )) - )}= / (2.0 + )= *= * ( + *(+*(+*(+*(+*(+*))))))if == 0 {return - ( - *(+))}return float64()* - (( - (*(+) + (float64()* + ))) - )}