Source File
trig_reduce.go
Belonging Package
math
// Copyright 2018 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package mathimport ()// reduceThreshold is the maximum value of x where the reduction using Pi/4// in 3 float64 parts still gives accurate results. This threshold// is set by y*C being representable as a float64 without error// where y is given by y = floor(x * (4 / Pi)) and C is the leading partial// terms of 4/Pi. Since the leading terms (PI4A and PI4B in sin.go) have 30// and 32 trailing zero bits, y should have less than 30 significant bits.// y < 1<<30 -> floor(x*4/Pi) < 1<<30 -> x < (1<<30 - 1) * Pi/4// So, conservatively we can take x < 1<<29.// Above this threshold Payne-Hanek range reduction must be used.const reduceThreshold = 1 << 29// trigReduce implements Payne-Hanek range reduction by Pi/4// for x > 0. It returns the integer part mod 8 (j) and// the fractional part (z) of x / (Pi/4).// The implementation is based on:// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"// K. C. Ng et al, March 24, 1992// The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic.func ( float64) ( uint64, float64) {const = Pi / 4if < {return 0,}// Extract out the integer and exponent such that,// x = ix * 2 ** exp.:= Float64bits():= int(>>shift&mask) - bias - shift&^= mask << shift|= 1 << shift// Use the exponent to extract the 3 appropriate uint64 digits from mPi4,// B ~ (z0, z1, z2), such that the product leading digit has the exponent -61.// Note, exp >= -53 since x >= PI4 and exp < 971 for maximum float64., := uint(+61)/64, uint(+61)%64:= (mPi4[] << ) | (mPi4[+1] >> (64 - )):= (mPi4[+1] << ) | (mPi4[+2] >> (64 - )):= (mPi4[+2] << ) | (mPi4[+3] >> (64 - ))// Multiply mantissa by the digits and extract the upper two digits (hi, lo)., := bits.Mul64(, ), := bits.Mul64(, ):= *, := bits.Add64(, , 0), := bits.Add64(, , )// The top 3 bits are j.= >> 61// Extract the fraction and find its magnitude.= <<3 | >>61:= uint(bits.LeadingZeros64()):= uint64(bias - ( + 1))// Clear implicit mantissa bit and shift into place.= ( << ( + 1)) | ( >> (64 - ( + 1)))>>= 64 - shift// Include the exponent and convert to a float.|= << shift= Float64frombits()// Map zeros to origin.if &1 == 1 {++&= 7--}// Multiply the fractional part by pi/4.return , *}// mPi4 is the binary digits of 4/pi as a uint64 array,// that is, 4/pi = Sum mPi4[i]*2^(-64*i)// 19 64-bit digits and the leading one bit give 1217 bits// of precision to handle the largest possible float64 exponent.var mPi4 = [...]uint64{0x0000000000000001,0x45f306dc9c882a53,0xf84eafa3ea69bb81,0xb6c52b3278872083,0xfca2c757bd778ac3,0x6e48dc74849ba5c0,0x0c925dd413a32439,0xfc3bd63962534e7d,0xd1046bea5d768909,0xd338e04d68befc82,0x7323ac7306a673e9,0x3908bf177bf25076,0x3ff12fffbc0b301f,0xde5e2316b414da3e,0xda6cfd9e4f96136e,0x9e8c7ecd3cbfd45a,0xea4f758fd7cbe2f6,0x7a0e73ef14a525d4,0xd7f6bf623f1aba10,0xac06608df8f6d757,}