Source File
gamma.go
Belonging Package
math
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math// The original C code, the long comment, and the constants// below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.// The go code is a simplified version of the original C.//// tgamma.c//// Gamma function//// SYNOPSIS://// double x, y, tgamma();// extern int signgam;//// y = tgamma( x );//// DESCRIPTION://// Returns gamma function of the argument. The result is// correctly signed, and the sign (+1 or -1) is also// returned in a global (extern) variable named signgam.// This variable is also filled in by the logarithmic gamma// function lgamma().//// Arguments |x| <= 34 are reduced by recurrence and the function// approximated by a rational function of degree 6/7 in the// interval (2,3). Large arguments are handled by Stirling's// formula. Large negative arguments are made positive using// a reflection formula.//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// DEC -34, 34 10000 1.3e-16 2.5e-17// IEEE -170,-33 20000 2.3e-15 3.3e-16// IEEE -33, 33 20000 9.4e-16 2.2e-16// IEEE 33, 171.6 20000 2.3e-15 3.2e-16//// Error for arguments outside the test range will be larger// owing to error amplification by the exponential function.//// Cephes Math Library Release 2.8: June, 2000// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier//// The readme file at http://netlib.sandia.gov/cephes/ says:// Some software in this archive may be from the book _Methods and// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster// International, 1989) or from the Cephes Mathematical Library, a// commercial product. In either event, it is copyrighted by the author.// What you see here may be used freely but it comes with no support or// guarantee.//// The two known misprints in the book are repaired here in the// source listings for the gamma function and the incomplete beta// integral.//// Stephen L. Moshier// moshier@na-net.ornl.govvar _gamP = [...]float64{1.60119522476751861407e-04,1.19135147006586384913e-03,1.04213797561761569935e-02,4.76367800457137231464e-02,2.07448227648435975150e-01,4.94214826801497100753e-01,9.99999999999999996796e-01,}var _gamQ = [...]float64{-2.31581873324120129819e-05,5.39605580493303397842e-04,-4.45641913851797240494e-03,1.18139785222060435552e-02,3.58236398605498653373e-02,-2.34591795718243348568e-01,7.14304917030273074085e-02,1.00000000000000000320e+00,}var _gamS = [...]float64{7.87311395793093628397e-04,-2.29549961613378126380e-04,-2.68132617805781232825e-03,3.47222221605458667310e-03,8.33333333333482257126e-02,}// Gamma function computed by Stirling's formula.// The pair of results must be multiplied together to get the actual answer.// The multiplication is left to the caller so that, if careful, the caller can avoid// infinity for 172 <= x <= 180.// The polynomial is valid for 33 <= x <= 172; larger values are only used// in reciprocal and produce denormalized floats. The lower precision there// masks any imprecision in the polynomial.func ( float64) (float64, float64) {if > 200 {return Inf(1), 1}const (= 2.506628274631000502417= 143.01608):= 1 /= 1 + *((((_gamS[0]*+_gamS[1])*+_gamS[2])*+_gamS[3])*+_gamS[4]):= Exp():= 1.0if > { // avoid Pow() overflow:= Pow(, 0.5*-0.25), = , /} else {= Pow(, -0.5) /}return , * *}// Gamma returns the Gamma function of x.//// Special cases are:// Gamma(+Inf) = +Inf// Gamma(+0) = +Inf// Gamma(-0) = -Inf// Gamma(x) = NaN for integer x < 0// Gamma(-Inf) = NaN// Gamma(NaN) = NaNfunc ( float64) float64 {const = 0.57721566490153286060651209008240243104215933593992 // A001620// special casesswitch {case isNegInt() || IsInf(, -1) || IsNaN():return NaN()case IsInf(, 1):return Inf(1)case == 0:if Signbit() {return Inf(-1)}return Inf(1)}:= Abs():= Floor()if > 33 {if >= 0 {, := stirling()return *}// Note: x is negative but (checked above) not a negative integer,// so x must be small enough to be in range for conversion to int64.// If |x| were >= 2⁶³ it would have to be an integer.:= 1if := int64(); &1 == 0 {= -1}:= -if > 0.5 {= + 1= -}= * Sin(Pi*)if == 0 {return Inf()}, := stirling():= Abs():= * *if IsInf(, 0) {= Pi / / /} else {= Pi /}return float64() *}// Reduce argument:= 1.0for >= 3 {= - 1= *}for < 0 {if > -1e-09 {goto}= /= + 1}for < 2 {if < 1e-09 {goto}= /= + 1}if == 2 {return}= - 2= (((((*_gamP[0]+_gamP[1])*+_gamP[2])*+_gamP[3])*+_gamP[4])*+_gamP[5])* + _gamP[6]= ((((((*_gamQ[0]+_gamQ[1])*+_gamQ[2])*+_gamQ[3])*+_gamQ[4])*+_gamQ[5])*+_gamQ[6])* + _gamQ[7]return * /:if == 0 {return Inf(1)}return / ((1 + *) * )}func ( float64) bool {if < 0 {, := Modf()return == 0}return false}