Source File
sin.go
Belonging Package
math
// Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math/*Floating-point sine and cosine.*/// The original C code, the long comment, and the constants// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,// available from http://www.netlib.org/cephes/cmath.tgz.// The go code is a simplified version of the original C.//// sin.c//// Circular sine//// SYNOPSIS://// double x, y, sin();// y = sin( x );//// DESCRIPTION://// Range reduction is into intervals of pi/4. The reduction error is nearly// eliminated by contriving an extended precision modular arithmetic.//// Two polynomial approximating functions are employed.// Between 0 and pi/4 the sine is approximated by// x + x**3 P(x**2).// Between pi/4 and pi/2 the cosine is represented as// 1 - x**2 Q(x**2).//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// DEC 0, 10 150000 3.0e-17 7.8e-18// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17//// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may// be meaningless for x > 2**49 = 5.6e14.//// cos.c//// Circular cosine//// SYNOPSIS://// double x, y, cos();// y = cos( x );//// DESCRIPTION://// Range reduction is into intervals of pi/4. The reduction error is nearly// eliminated by contriving an extended precision modular arithmetic.//// Two polynomial approximating functions are employed.// Between 0 and pi/4 the cosine is approximated by// 1 - x**2 Q(x**2).// Between pi/4 and pi/2 the sine is represented as// x + x**3 P(x**2).//// ACCURACY://// Relative error:// arithmetic domain # trials peak rms// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17// DEC 0,+1.07e9 17000 3.0e-17 7.2e-18//// Cephes Math Library Release 2.8: June, 2000// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier//// The readme file at http://netlib.sandia.gov/cephes/ says:// Some software in this archive may be from the book _Methods and// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster// International, 1989) or from the Cephes Mathematical Library, a// commercial product. In either event, it is copyrighted by the author.// What you see here may be used freely but it comes with no support or// guarantee.//// The two known misprints in the book are repaired here in the// source listings for the gamma function and the incomplete beta// integral.//// Stephen L. Moshier// moshier@na-net.ornl.gov// sin coefficientsvar _sin = [...]float64{1.58962301576546568060e-10, // 0x3de5d8fd1fd19ccd-2.50507477628578072866e-8, // 0xbe5ae5e5a9291f5d2.75573136213857245213e-6, // 0x3ec71de3567d48a1-1.98412698295895385996e-4, // 0xbf2a01a019bfdf038.33333333332211858878e-3, // 0x3f8111111110f7d0-1.66666666666666307295e-1, // 0xbfc5555555555548}// cos coefficientsvar _cos = [...]float64{-1.13585365213876817300e-11, // 0xbda8fa49a0861a9b2.08757008419747316778e-9, // 0x3e21ee9d7b4e3f05-2.75573141792967388112e-7, // 0xbe927e4f7eac4bc62.48015872888517045348e-5, // 0x3efa01a019c844f5-1.38888888888730564116e-3, // 0xbf56c16c16c14f914.16666666666665929218e-2, // 0x3fa555555555554b}// Cos returns the cosine of the radian argument x.//// Special cases are:// Cos(±Inf) = NaN// Cos(NaN) = NaNfunc ( float64) float64func ( float64) float64 {const (= 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts= 3.77489470793079817668e-8 // 0x3e64442d00000000,= 2.69515142907905952645e-15 // 0x3ce8469898cc5170,)// special casesswitch {case IsNaN() || IsInf(, 0):return NaN()}// make argument positive:= false= Abs()var uint64var , float64if >= reduceThreshold {, = trigReduce()} else {= uint64( * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle= float64() // integer part of x/(Pi/4), as float// map zeros to originif &1 == 1 {++++}&= 7 // octant modulo 2Pi radians (360 degrees)= (( - *) - *) - * // Extended precision modular arithmetic}if > 3 {-= 4= !}if > 1 {= !}:= *if == 1 || == 2 {= + **((((((_sin[0]*)+_sin[1])*+_sin[2])*+_sin[3])*+_sin[4])*+_sin[5])} else {= 1.0 - 0.5* + **((((((_cos[0]*)+_cos[1])*+_cos[2])*+_cos[3])*+_cos[4])*+_cos[5])}if {= -}return}// Sin returns the sine of the radian argument x.//// Special cases are:// Sin(±0) = ±0// Sin(±Inf) = NaN// Sin(NaN) = NaNfunc ( float64) float64func ( float64) float64 {const (= 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts= 3.77489470793079817668e-8 // 0x3e64442d00000000,= 2.69515142907905952645e-15 // 0x3ce8469898cc5170,)// special casesswitch {case == 0 || IsNaN():return // return ±0 || NaN()case IsInf(, 0):return NaN()}// make argument positive but save the sign:= falseif < 0 {= -= true}var uint64var , float64if >= reduceThreshold {, = trigReduce()} else {= uint64( * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle= float64() // integer part of x/(Pi/4), as float// map zeros to originif &1 == 1 {++++}&= 7 // octant modulo 2Pi radians (360 degrees)= (( - *) - *) - * // Extended precision modular arithmetic}// reflect in x axisif > 3 {= !-= 4}:= *if == 1 || == 2 {= 1.0 - 0.5* + **((((((_cos[0]*)+_cos[1])*+_cos[2])*+_cos[3])*+_cos[4])*+_cos[5])} else {= + **((((((_sin[0]*)+_sin[1])*+_sin[2])*+_sin[3])*+_sin[4])*+_sin[5])}if {= -}return}