Source File
j0.go
Belonging Package
math
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package math/*Bessel function of the first and second kinds of order zero.*/// The original C code and the long comment below are// from FreeBSD's /usr/src/lib/msun/src/e_j0.c and// came with this notice. The go code is a simplified// version of the original C.//// ====================================================// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.//// Developed at SunPro, a Sun Microsystems, Inc. business.// Permission to use, copy, modify, and distribute this// software is freely granted, provided that this notice// is preserved.// ====================================================//// __ieee754_j0(x), __ieee754_y0(x)// Bessel function of the first and second kinds of order zero.// Method -- j0(x):// 1. For tiny x, we use j0(x) = 1 - x**2/4 + x**4/64 - ...// 2. Reduce x to |x| since j0(x)=j0(-x), and// for x in (0,2)// j0(x) = 1-z/4+ z**2*R0/S0, where z = x*x;// (precision: |j0-1+z/4-z**2R0/S0 |<2**-63.67 )// for x in (2,inf)// j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))// where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)// as follow:// cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)// = 1/sqrt(2) * (cos(x) + sin(x))// sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)// = 1/sqrt(2) * (sin(x) - cos(x))// (To avoid cancellation, use// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))// to compute the worse one.)//// 3 Special cases// j0(nan)= nan// j0(0) = 1// j0(inf) = 0//// Method -- y0(x):// 1. For x<2.// Since// y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x**2/4 - ...)// therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.// We use the following function to approximate y0,// y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x**2// where// U(z) = u00 + u01*z + ... + u06*z**6// V(z) = 1 + v01*z + ... + v04*z**4// with absolute approximation error bounded by 2**-72.// Note: For tiny x, U/V = u0 and j0(x)~1, hence// y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)// 2. For x>=2.// y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))// where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)// by the method mentioned above.// 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.//// J0 returns the order-zero Bessel function of the first kind.//// Special cases are:// J0(±Inf) = 0// J0(0) = 1// J0(NaN) = NaNfunc ( float64) float64 {const (= 1e300= 1.0 / (1 << 27) // 2**-27 0x3e40000000000000= 1.0 / (1 << 13) // 2**-13 0x3f20000000000000= 1 << 129 // 2**129 0x4800000000000000// R0/S0 on [0, 2]= 1.56249999999999947958e-02 // 0x3F8FFFFFFFFFFFFD= -1.89979294238854721751e-04 // 0xBF28E6A5B61AC6E9= 1.82954049532700665670e-06 // 0x3EBEB1D10C503919= -4.61832688532103189199e-09 // 0xBE33D5E773D63FCE= 1.56191029464890010492e-02 // 0x3F8FFCE882C8C2A4= 1.16926784663337450260e-04 // 0x3F1EA6D2DD57DBF4= 5.13546550207318111446e-07 // 0x3EA13B54CE84D5A9= 1.16614003333790000205e-09 // 0x3E1408BCF4745D8F)// special casesswitch {case IsNaN():returncase IsInf(, 0):return 0case == 0:return 1}= Abs()if >= 2 {, := Sincos():= -:= +// make sure x+x does not overflowif < MaxFloat64/2 {:= -Cos( + )if * < 0 {= /} else {= /}}// j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)// y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)var float64if > { // |x| > ~6.8056e+38= (1 / SqrtPi) * / Sqrt()} else {:= pzero():= qzero()= (1 / SqrtPi) * (* - *) / Sqrt()}return // |x| >= 2.0}if < { // |x| < ~1.2207e-4if < {return 1 // |x| < ~7.4506e-9}return 1 - 0.25** // ~7.4506e-9 < |x| < ~1.2207e-4}:= *:= * ( + *(+*(+*))):= 1 + *(+*(+*(+*)))if < 1 {return 1 + *(-0.25+(/)) // |x| < 1.00}:= 0.5 *return (1+)*(1-) + *(/) // 1.0 < |x| < 2.0}// Y0 returns the order-zero Bessel function of the second kind.//// Special cases are:// Y0(+Inf) = 0// Y0(0) = -Inf// Y0(x < 0) = NaN// Y0(NaN) = NaNfunc ( float64) float64 {const (= 1.0 / (1 << 27) // 2**-27 0x3e40000000000000= 1 << 129 // 2**129 0x4800000000000000= -7.38042951086872317523e-02 // 0xBFB2E4D699CBD01F= 1.76666452509181115538e-01 // 0x3FC69D019DE9E3FC= -1.38185671945596898896e-02 // 0xBF8C4CE8B16CFA97= 3.47453432093683650238e-04 // 0x3F36C54D20B29B6B= -3.81407053724364161125e-06 // 0xBECFFEA773D25CAD= 1.95590137035022920206e-08 // 0x3E5500573B4EABD4= -3.98205194132103398453e-11 // 0xBDC5E43D693FB3C8= 1.27304834834123699328e-02 // 0x3F8A127091C9C71A= 7.60068627350353253702e-05 // 0x3F13ECBBF578C6C1= 2.59150851840457805467e-07 // 0x3E91642D7FF202FD= 4.41110311332675467403e-10 // 0x3DFE50183BD6D9EF)// special casesswitch {case < 0 || IsNaN():return NaN()case IsInf(, 1):return 0case == 0:return Inf(-1)}if >= 2 { // |x| >= 2.0// y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))// where x0 = x-pi/4// Better formula:// cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)// = 1/sqrt(2) * (sin(x) + cos(x))// sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)// = 1/sqrt(2) * (sin(x) - cos(x))// To avoid cancellation, use// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))// to compute the worse one., := Sincos():= -:= +// j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)// y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)// make sure x+x does not overflowif < MaxFloat64/2 {:= -Cos( + )if * < 0 {= /} else {= /}}var float64if > { // |x| > ~6.8056e+38= (1 / SqrtPi) * / Sqrt()} else {:= pzero():= qzero()= (1 / SqrtPi) * (* + *) / Sqrt()}return // |x| >= 2.0}if <= {return + (2/Pi)*Log() // |x| < ~7.4506e-9}:= *:= + *(+*(+*(+*(+*(+*))))):= 1 + *(+*(+*(+*)))return / + (2/Pi)*J0()*Log() // ~7.4506e-9 < |x| < 2.0}// The asymptotic expansions of pzero is// 1 - 9/128 s**2 + 11025/98304 s**4 - ..., where s = 1/x.// For x >= 2, We approximate pzero by// pzero(x) = 1 + (R/S)// where R = pR0 + pR1*s**2 + pR2*s**4 + ... + pR5*s**10// S = 1 + pS0*s**2 + ... + pS4*s**10// and// | pzero(x)-1-R/S | <= 2 ** ( -60.26)// for x in [inf, 8]=1/[0,0.125]var p0R8 = [6]float64{0.00000000000000000000e+00, // 0x0000000000000000-7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32-8.08167041275349795626e+00, // 0xC02029D0B44FA779-2.57063105679704847262e+02, // 0xC07011027B19E863-2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC-5.25304380490729545272e+03, // 0xC0B4850B36CC643D}var p0S8 = [5]float64{1.16534364619668181717e+02, // 0x405D223307A967513.83374475364121826715e+03, // 0x40ADF37D505969384.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F1.16752972564375915681e+05, // 0x40FC810F8F9FA9BD4.76277284146730962675e+04, // 0x40E741774F2C49DC}// for x in [8,4.5454]=1/[0.125,0.22001]var p0R5 = [6]float64{-1.14125464691894502584e-11, // 0xBDA918B147E495CC-7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6-4.15961064470587782438e+00, // 0xC010A370F90C6BBF-6.76747652265167261021e+01, // 0xC050EB2F5A7D1783-3.31231299649172967747e+02, // 0xC074B3B36742CC63-3.46433388365604912451e+02, // 0xC075A6EF28A38BD7}var p0S5 = [5]float64{6.07539382692300335975e+01, // 0x404E60810C98C5DE1.05125230595704579173e+03, // 0x40906D025C7E28645.97897094333855784498e+03, // 0x40B75AF88FBE1D609.62544514357774460223e+03, // 0x40C2CCB8FA76FA382.40605815922939109441e+03, // 0x40A2CC1DC70BE864}// for x in [4.547,2.8571]=1/[0.2199,0.35001]var p0R3 = [6]float64{-2.54704601771951915620e-09, // 0xBE25E1036FE1AA86-7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B-2.40903221549529611423e+00, // 0xC00345B2AEA48074-2.19659774734883086467e+01, // 0xC035F74A4CB94E14-5.80791704701737572236e+01, // 0xC04D0A22420A1A45-3.14479470594888503854e+01, // 0xC03F72ACA892D80F}var p0S3 = [5]float64{3.58560338055209726349e+01, // 0x4041ED9284077DD33.61513983050303863820e+02, // 0x40769839464A7C0E1.19360783792111533330e+03, // 0x4092A66E6D1061D61.12799679856907414432e+03, // 0x40919FFCB8C39B7E1.73580930813335754692e+02, // 0x4065B296FC379081}// for x in [2.8570,2]=1/[0.3499,0.5]var p0R2 = [6]float64{-8.87534333032526411254e-08, // 0xBE77D316E927026D-7.03030995483624743247e-02, // 0xBFB1FF62495E1E42-1.45073846780952986357e+00, // 0xBFF736398A24A843-7.63569613823527770791e+00, // 0xC01E8AF3EDAFA7F3-1.11931668860356747786e+01, // 0xC02662E6C5246303-3.23364579351335335033e+00, // 0xC009DE81AF8FE70F}var p0S2 = [5]float64{2.22202997532088808441e+01, // 0x40363865908B59591.36206794218215208048e+02, // 0x4061069E0EE8878F2.70470278658083486789e+02, // 0x4070E78642EA079B1.53875394208320329881e+02, // 0x40633C033AB6FAFF1.46576176948256193810e+01, // 0x402D50B344391809}func ( float64) float64 {var *[6]float64var *[5]float64if >= 8 {= &p0R8= &p0S8} else if >= 4.5454 {= &p0R5= &p0S5} else if >= 2.8571 {= &p0R3= &p0S3} else if >= 2 {= &p0R2= &p0S2}:= 1 / ( * ):= [0] + *([1]+*([2]+*([3]+*([4]+*[5])))):= 1 + *([0]+*([1]+*([2]+*([3]+*[4]))))return 1 + /}// For x >= 8, the asymptotic expansions of qzero is// -1/8 s + 75/1024 s**3 - ..., where s = 1/x.// We approximate pzero by// qzero(x) = s*(-1.25 + (R/S))// where R = qR0 + qR1*s**2 + qR2*s**4 + ... + qR5*s**10// S = 1 + qS0*s**2 + ... + qS5*s**12// and// | qzero(x)/s +1.25-R/S | <= 2**(-61.22)// for x in [inf, 8]=1/[0,0.125]var q0R8 = [6]float64{0.00000000000000000000e+00, // 0x00000000000000007.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C1.17682064682252693899e+01, // 0x402789525BB334D65.57673380256401856059e+02, // 0x40816D63153018258.85919720756468632317e+03, // 0x40C14D993E18F46D3.70146267776887834771e+04, // 0x40E212D40E901566}var q0S8 = [6]float64{1.63776026895689824414e+02, // 0x406478D5365B39BC8.09834494656449805916e+03, // 0x40BFA2584E6B05631.42538291419120476348e+05, // 0x4101665254D38C3F8.03309257119514397345e+05, // 0x412883DA83A52B438.40501579819060512818e+05, // 0x4129A66B28DE0B3D-3.43899293537866615225e+05, // 0xC114FD6D2C9530C5}// for x in [8,4.5454]=1/[0.125,0.22001]var q0R5 = [6]float64{1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD97.32421766612684765896e-02, // 0x3FB2BFFFD172B04C5.83563508962056953777e+00, // 0x401757B0B9953DD31.35111577286449829671e+02, // 0x4060E3920A8788E91.02724376596164097464e+03, // 0x40900CF99DC8C4811.98997785864605384631e+03, // 0x409F17E953C6E3A6}var q0S5 = [6]float64{8.27766102236537761883e+01, // 0x4054B1B3FB5E15432.07781416421392987104e+03, // 0x40A03BA0DA21C0CE1.88472887785718085070e+04, // 0x40D267D27B591E6D5.67511122894947329769e+04, // 0x40EBB5E397E023723.59767538425114471465e+04, // 0x40E191181F7A54A0-5.35434275601944773371e+03, // 0xC0B4EA57BEDBC609}// for x in [4.547,2.8571]=1/[0.2199,0.35001]var q0R3 = [6]float64{4.37741014089738620906e-09, // 0x3E32CD036ADECB827.32411180042911447163e-02, // 0x3FB2BFEE0E8D08423.34423137516170720929e+00, // 0x400AC0FC61149CF54.26218440745412650017e+01, // 0x40454F98962DAEDD1.70808091340565596283e+02, // 0x406559DBE25EFD1F1.66733948696651168575e+02, // 0x4064D77C81FA21E0}var q0S3 = [6]float64{4.87588729724587182091e+01, // 0x40486122BFE343A67.09689221056606015736e+02, // 0x40862D8386544EB33.70414822620111362994e+03, // 0x40ACF04BE44DFC636.46042516752568917582e+03, // 0x40B93C6CD7C76A282.51633368920368957333e+03, // 0x40A3A8AAD94FB1C0-1.49247451836156386662e+02, // 0xC062A7EB201CF40F}// for x in [2.8570,2]=1/[0.3499,0.5]var q0R2 = [6]float64{1.50444444886983272379e-07, // 0x3E84313B54F76BDB7.32234265963079278272e-02, // 0x3FB2BEC53E883E341.99819174093815998816e+00, // 0x3FFFF897E727779C1.44956029347885735348e+01, // 0x402CFDBFAAF96FE53.16662317504781540833e+01, // 0x403FAA8E29FBDC4A1.62527075710929267416e+01, // 0x403040B171814BB4}var q0S2 = [6]float64{3.03655848355219184498e+01, // 0x403E5D96F7C07AED2.69348118608049844624e+02, // 0x4070D591E4D14B408.44783757595320139444e+02, // 0x408A664522B3BF228.82935845112488550512e+02, // 0x408B977C9C5CC2142.12666388511798828631e+02, // 0x406A95530E001365-5.31095493882666946917e+00, // 0xC0153E6AF8B32931}func ( float64) float64 {var , *[6]float64if >= 8 {= &q0R8= &q0S8} else if >= 4.5454 {= &q0R5= &q0S5} else if >= 2.8571 {= &q0R3= &q0S3} else if >= 2 {= &q0R2= &q0S2}:= 1 / ( * ):= [0] + *([1]+*([2]+*([3]+*([4]+*[5])))):= 1 + *([0]+*([1]+*([2]+*([3]+*([4]+*[5])))))return (-0.125 + /) /}