// Copyright 2013 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package runtimeimport ()/*Stack layout parameters.Included both by runtime (compiled via 6c) and linkers (compiled via gcc).The per-goroutine g->stackguard is set to point StackGuard bytesabove the bottom of the stack. Each function compares its stackpointer against g->stackguard to check for overflow. To cut oneinstruction from the check sequence for functions with tiny frames,the stack is allowed to protrude StackSmall bytes below the stackguard. Functions with large frames don't bother with the check andalways call morestack. The sequences are (for amd64, others aresimilar): guard = g->stackguard frame = function's stack frame size argsize = size of function arguments (call + return) stack frame size <= StackSmall: CMPQ guard, SP JHI 3(PC) MOVQ m->morearg, $(argsize << 32) CALL morestack(SB) stack frame size > StackSmall but < StackBig LEAQ (frame-StackSmall)(SP), R0 CMPQ guard, R0 JHI 3(PC) MOVQ m->morearg, $(argsize << 32) CALL morestack(SB) stack frame size >= StackBig: MOVQ m->morearg, $((argsize << 32) | frame) CALL morestack(SB)The bottom StackGuard - StackSmall bytes are important: there hasto be enough room to execute functions that refuse to check forstack overflow, either because they need to be adjacent to theactual caller's frame (deferproc) or because they handle the imminentstack overflow (morestack).For example, deferproc might call malloc, which does one of theabove checks (without allocating a full frame), which might triggera call to morestack. This sequence needs to fit in the bottomsection of the stack. On amd64, morestack's frame is 40 bytes, anddeferproc's frame is 56 bytes. That fits well within theStackGuard - StackSmall bytes at the bottom.The linkers explore all possible call traces involving non-splittingfunctions to make sure that this limit cannot be violated.*/const (// StackSystem is a number of additional bytes to add // to each stack below the usual guard area for OS-specific // purposes like signal handling. Used on Windows, Plan 9, // and iOS because they do not use a separate stack._StackSystem = sys.GoosWindows*512*sys.PtrSize + sys.GoosPlan9*512 + sys.GoosIos*sys.GoarchArm64*1024// The minimum size of stack used by Go code_StackMin = 2048// The minimum stack size to allocate. // The hackery here rounds FixedStack0 up to a power of 2._FixedStack0 = _StackMin + _StackSystem_FixedStack1 = _FixedStack0 - 1_FixedStack2 = _FixedStack1 | (_FixedStack1 >> 1)_FixedStack3 = _FixedStack2 | (_FixedStack2 >> 2)_FixedStack4 = _FixedStack3 | (_FixedStack3 >> 4)_FixedStack5 = _FixedStack4 | (_FixedStack4 >> 8)_FixedStack6 = _FixedStack5 | (_FixedStack5 >> 16)_FixedStack = _FixedStack6 + 1// Functions that need frames bigger than this use an extra // instruction to do the stack split check, to avoid overflow // in case SP - framesize wraps below zero. // This value can be no bigger than the size of the unmapped // space at zero._StackBig = 4096// The stack guard is a pointer this many bytes above the // bottom of the stack._StackGuard = 928*sys.StackGuardMultiplier + _StackSystem// After a stack split check the SP is allowed to be this // many bytes below the stack guard. This saves an instruction // in the checking sequence for tiny frames._StackSmall = 128// The maximum number of bytes that a chain of NOSPLIT // functions can use._StackLimit = _StackGuard - _StackSystem - _StackSmall)const (// stackDebug == 0: no logging // == 1: logging of per-stack operations // == 2: logging of per-frame operations // == 3: logging of per-word updates // == 4: logging of per-word readsstackDebug = 0stackFromSystem = 0// allocate stacks from system memory instead of the heapstackFaultOnFree = 0// old stacks are mapped noaccess to detect use after freestackPoisonCopy = 0// fill stack that should not be accessed with garbage, to detect bad dereferences during copystackNoCache = 0// disable per-P small stack caches// check the BP links during traceback.debugCheckBP = false)const (uintptrMask = 1<<(8*sys.PtrSize) - 1// Goroutine preemption request. // Stored into g->stackguard0 to cause split stack check failure. // Must be greater than any real sp. // 0xfffffade in hex.stackPreempt = uintptrMask & -1314// Thread is forking. // Stored into g->stackguard0 to cause split stack check failure. // Must be greater than any real sp.stackFork = uintptrMask & -1234)// Global pool of spans that have free stacks.// Stacks are assigned an order according to size.// order = log_2(size/FixedStack)// There is a free list for each order.varstackpool [_NumStackOrders]struct { item stackpoolItem _ [cpu.CacheLinePadSize - unsafe.Sizeof(stackpoolItem{})%cpu.CacheLinePadSize]byte}//go:notinheaptypestackpoolItemstruct { mu mutex span mSpanList}// Global pool of large stack spans.varstackLargestruct { lock mutex free [heapAddrBits - pageShift]mSpanList// free lists by log_2(s.npages)}func () {if_StackCacheSize&_PageMask != 0 {throw("cache size must be a multiple of page size") }for := rangestackpool {stackpool[].item.span.init()lockInit(&stackpool[].item.mu, lockRankStackpool) }for := rangestackLarge.free {stackLarge.free[].init()lockInit(&stackLarge.lock, lockRankStackLarge) }}// stacklog2 returns ⌊log_2(n)⌋.func ( uintptr) int { := 0for > 1 { >>= 1 ++ }return}// Allocates a stack from the free pool. Must be called with// stackpool[order].item.mu held.func ( uint8) gclinkptr { := &stackpool[].item.span := .firstlockWithRankMayAcquire(&mheap_.lock, lockRankMheap)if == nil {// no free stacks. Allocate another span worth. = mheap_.allocManual(_StackCacheSize>>_PageShift, spanAllocStack)if == nil {throw("out of memory") }if .allocCount != 0 {throw("bad allocCount") }if .manualFreeList.ptr() != nil {throw("bad manualFreeList") }osStackAlloc() .elemsize = _FixedStack << for := uintptr(0); < _StackCacheSize; += .elemsize { := gclinkptr(.base() + ) .ptr().next = .manualFreeList .manualFreeList = } .insert() } := .manualFreeListif .ptr() == nil {throw("span has no free stacks") } .manualFreeList = .ptr().next .allocCount++if .manualFreeList.ptr() == nil {// all stacks in s are allocated. .remove() }return}// Adds stack x to the free pool. Must be called with stackpool[order].item.mu held.func ( gclinkptr, uint8) { := spanOfUnchecked(uintptr())if .state.get() != mSpanManual {throw("freeing stack not in a stack span") }if .manualFreeList.ptr() == nil {// s will now have a free stackstackpool[].item.span.insert() } .ptr().next = .manualFreeList .manualFreeList = .allocCount--ifgcphase == _GCoff && .allocCount == 0 {// Span is completely free. Return it to the heap // immediately if we're sweeping. // // If GC is active, we delay the free until the end of // GC to avoid the following type of situation: // // 1) GC starts, scans a SudoG but does not yet mark the SudoG.elem pointer // 2) The stack that pointer points to is copied // 3) The old stack is freed // 4) The containing span is marked free // 5) GC attempts to mark the SudoG.elem pointer. The // marking fails because the pointer looks like a // pointer into a free span. // // By not freeing, we prevent step #4 until GC is done.stackpool[].item.span.remove() .manualFreeList = 0osStackFree()mheap_.freeManual(, spanAllocStack) }}// stackcacherefill/stackcacherelease implement a global pool of stack segments.// The pool is required to prevent unlimited growth of per-thread caches.////go:systemstackfunc ( *mcache, uint8) {ifstackDebug >= 1 {print("stackcacherefill order=", , "\n") }// Grab some stacks from the global cache. // Grab half of the allowed capacity (to prevent thrashing).vargclinkptrvaruintptrlock(&stackpool[].item.mu)for < _StackCacheSize/2 { := stackpoolalloc() .ptr().next = = += _FixedStack << }unlock(&stackpool[].item.mu) .stackcache[].list = .stackcache[].size = }//go:systemstackfunc ( *mcache, uint8) {ifstackDebug >= 1 {print("stackcacherelease order=", , "\n") } := .stackcache[].list := .stackcache[].sizelock(&stackpool[].item.mu)for > _StackCacheSize/2 { := .ptr().nextstackpoolfree(, ) = -= _FixedStack << }unlock(&stackpool[].item.mu) .stackcache[].list = .stackcache[].size = }//go:systemstackfunc ( *mcache) {ifstackDebug >= 1 {print("stackcache clear\n") }for := uint8(0); < _NumStackOrders; ++ {lock(&stackpool[].item.mu) := .stackcache[].listfor .ptr() != nil { := .ptr().nextstackpoolfree(, ) = } .stackcache[].list = 0 .stackcache[].size = 0unlock(&stackpool[].item.mu) }}// stackalloc allocates an n byte stack.//// stackalloc must run on the system stack because it uses per-P// resources and must not split the stack.////go:systemstackfunc ( uint32) stack {// Stackalloc must be called on scheduler stack, so that we // never try to grow the stack during the code that stackalloc runs. // Doing so would cause a deadlock (issue 1547). := getg()if != .m.g0 {throw("stackalloc not on scheduler stack") }if &(-1) != 0 {throw("stack size not a power of 2") }ifstackDebug >= 1 {print("stackalloc ", , "\n") }ifdebug.efence != 0 || stackFromSystem != 0 { = uint32(alignUp(uintptr(), physPageSize)) := sysAlloc(uintptr(), &memstats.stacks_sys)if == nil {throw("out of memory (stackalloc)") }returnstack{uintptr(), uintptr() + uintptr()} }// Small stacks are allocated with a fixed-size free-list allocator. // If we need a stack of a bigger size, we fall back on allocating // a dedicated span.varunsafe.Pointerif < _FixedStack<<_NumStackOrders && < _StackCacheSize { := uint8(0) := for > _FixedStack { ++ >>= 1 }vargclinkptrifstackNoCache != 0 || .m.p == 0 || .m.preemptoff != "" {// thisg.m.p == 0 can happen in the guts of exitsyscall // or procresize. Just get a stack from the global pool. // Also don't touch stackcache during gc // as it's flushed concurrently.lock(&stackpool[].item.mu) = stackpoolalloc()unlock(&stackpool[].item.mu) } else { := .m.p.ptr().mcache = .stackcache[].listif .ptr() == nil {stackcacherefill(, ) = .stackcache[].list } .stackcache[].list = .ptr().next .stackcache[].size -= uintptr() } = unsafe.Pointer() } else {var *mspan := uintptr() >> _PageShift := stacklog2()// Try to get a stack from the large stack cache.lock(&stackLarge.lock)if !stackLarge.free[].isEmpty() { = stackLarge.free[].firststackLarge.free[].remove() }unlock(&stackLarge.lock)lockWithRankMayAcquire(&mheap_.lock, lockRankMheap)if == nil {// Allocate a new stack from the heap. = mheap_.allocManual(, spanAllocStack)if == nil {throw("out of memory") }osStackAlloc() .elemsize = uintptr() } = unsafe.Pointer(.base()) }ifraceenabled {racemalloc(, uintptr()) }ifmsanenabled {msanmalloc(, uintptr()) }ifstackDebug >= 1 {print(" allocated ", , "\n") }returnstack{uintptr(), uintptr() + uintptr()}}// stackfree frees an n byte stack allocation at stk.//// stackfree must run on the system stack because it uses per-P// resources and must not split the stack.////go:systemstackfunc ( stack) { := getg() := unsafe.Pointer(.lo) := .hi - .loif &(-1) != 0 {throw("stack not a power of 2") }if .lo+ < .hi {throw("bad stack size") }ifstackDebug >= 1 {println("stackfree", , )memclrNoHeapPointers(, ) // for testing, clobber stack data }ifdebug.efence != 0 || stackFromSystem != 0 {ifdebug.efence != 0 || stackFaultOnFree != 0 {sysFault(, ) } else {sysFree(, , &memstats.stacks_sys) }return }ifmsanenabled {msanfree(, ) }if < _FixedStack<<_NumStackOrders && < _StackCacheSize { := uint8(0) := for > _FixedStack { ++ >>= 1 } := gclinkptr()ifstackNoCache != 0 || .m.p == 0 || .m.preemptoff != "" {lock(&stackpool[].item.mu)stackpoolfree(, )unlock(&stackpool[].item.mu) } else { := .m.p.ptr().mcacheif .stackcache[].size >= _StackCacheSize {stackcacherelease(, ) } .ptr().next = .stackcache[].list .stackcache[].list = .stackcache[].size += } } else { := spanOfUnchecked(uintptr())if .state.get() != mSpanManual {println(hex(.base()), )throw("bad span state") }ifgcphase == _GCoff {// Free the stack immediately if we're // sweeping.osStackFree()mheap_.freeManual(, spanAllocStack) } else {// If the GC is running, we can't return a // stack span to the heap because it could be // reused as a heap span, and this state // change would race with GC. Add it to the // large stack cache instead. := stacklog2(.npages)lock(&stackLarge.lock)stackLarge.free[].insert()unlock(&stackLarge.lock) } }}varmaxstacksizeuintptr = 1 << 20// enough until runtime.main sets it for realvarmaxstackceiling = maxstacksizevarptrnames = []string{0: "scalar",1: "ptr",}// Stack frame layout//// (x86)// +------------------+// | args from caller |// +------------------+ <- frame->argp// | return address |// +------------------+// | caller's BP (*) | (*) if framepointer_enabled && varp < sp// +------------------+ <- frame->varp// | locals |// +------------------+// | args to callee |// +------------------+ <- frame->sp//// (arm)// +------------------+// | args from caller |// +------------------+ <- frame->argp// | caller's retaddr |// +------------------+ <- frame->varp// | locals |// +------------------+// | args to callee |// +------------------+// | return address |// +------------------+ <- frame->sptypeadjustinfostruct { old stack delta uintptr// ptr distance from old to new stack (newbase - oldbase) cache pcvalueCache// sghi is the highest sudog.elem on the stack. sghi uintptr}// Adjustpointer checks whether *vpp is in the old stack described by adjinfo.// If so, it rewrites *vpp to point into the new stack.func ( *adjustinfo, unsafe.Pointer) { := (*uintptr)() := *ifstackDebug >= 4 {print(" ", , ":", hex(), "\n") }if .old.lo <= && < .old.hi { * = + .deltaifstackDebug >= 3 {print(" adjust ptr ", , ":", hex(), " -> ", hex(*), "\n") } }}// Information from the compiler about the layout of stack frames.// Note: this type must agree with reflect.bitVector.typebitvectorstruct { n int32// # of bits bytedata *uint8}// ptrbit returns the i'th bit in bv.// ptrbit is less efficient than iterating directly over bitvector bits,// and should only be used in non-performance-critical code.// See adjustpointers for an example of a high-efficiency walk of a bitvector.func ( *bitvector) ( uintptr) uint8 { := *(addb(.bytedata, /8))return ( >> ( % 8)) & 1}// bv describes the memory starting at address scanp.// Adjust any pointers contained therein.func ( unsafe.Pointer, *bitvector, *adjustinfo, funcInfo) { := .old.lo := .old.hi := .delta := uintptr(.n)// If this frame might contain channel receive slots, use CAS // to adjust pointers. If the slot hasn't been received into // yet, it may contain stack pointers and a concurrent send // could race with adjusting those pointers. (The sent value // itself can never contain stack pointers.) := uintptr() < .sghifor := uintptr(0); < ; += 8 {ifstackDebug >= 4 {for := uintptr(0); < 8; ++ {print(" ", add(, (+)*sys.PtrSize), ":", ptrnames[.ptrbit(+)], ":", hex(*(*uintptr)(add(, (+)*sys.PtrSize))), " # ", , " ", *addb(.bytedata, /8), "\n") } } := *(addb(.bytedata, /8))for != 0 { := uintptr(sys.Ctz8()) &= - 1 := (*uintptr)(add(, (+)*sys.PtrSize)) : := *if .valid() && 0 < && < minLegalPointer && debug.invalidptr != 0 {// Looks like a junk value in a pointer slot. // Live analysis wrong?getg().m.traceback = 2print("runtime: bad pointer in frame ", funcname(), " at ", , ": ", hex(), "\n")throw("invalid pointer found on stack") }if <= && < {ifstackDebug >= 3 {print("adjust ptr ", hex(), " ", funcname(), "\n") }if { := (*unsafe.Pointer)(unsafe.Pointer())if !atomic.Casp1(, unsafe.Pointer(), unsafe.Pointer(+)) {goto } } else { * = + } } } }}// Note: the argument/return area is adjusted by the callee.func ( *stkframe, unsafe.Pointer) bool { := (*adjustinfo)()if .continpc == 0 {// Frame is dead.returntrue } := .fnifstackDebug >= 2 {print(" adjusting ", funcname(), " frame=[", hex(.sp), ",", hex(.fp), "] pc=", hex(.pc), " continpc=", hex(.continpc), "\n") }if .funcID == funcID_systemstack_switch {// A special routine at the bottom of stack of a goroutine that does a systemstack call. // We will allow it to be copied even though we don't // have full GC info for it (because it is written in asm).returntrue } , , := getStackMap(, &.cache, true)// Adjust local variables if stack frame has been allocated.if .n > 0 { := uintptr(.n) * sys.PtrSizeadjustpointers(unsafe.Pointer(.varp-), &, , ) }// Adjust saved base pointer if there is one. // TODO what about arm64 frame pointer adjustment?ifsys.ArchFamily == sys.AMD64 && .argp-.varp == 2*sys.RegSize {ifstackDebug >= 3 {print(" saved bp\n") }ifdebugCheckBP {// Frame pointers should always point to the next higher frame on // the Go stack (or be nil, for the top frame on the stack). := *(*uintptr)(unsafe.Pointer(.varp))if != 0 && ( < .old.lo || >= .old.hi) {println("runtime: found invalid frame pointer")print("bp=", hex(), " min=", hex(.old.lo), " max=", hex(.old.hi), "\n")throw("bad frame pointer") } }adjustpointer(, unsafe.Pointer(.varp)) }// Adjust arguments.if .n > 0 {ifstackDebug >= 3 {print(" args\n") }adjustpointers(unsafe.Pointer(.argp), &, , funcInfo{}) }// Adjust pointers in all stack objects (whether they are live or not). // See comments in mgcmark.go:scanframeworker.if .varp != 0 {for , := range { := .off := .varp// locals base pointerif >= 0 { = .argp// arguments and return values base pointer } := + uintptr()if < .sp {// Object hasn't been allocated in the frame yet. // (Happens when the stack bounds check fails and // we call into morestack.)continue } := .typ := .gcdatavar *mspanif .kind&kindGCProg != 0 {// See comments in mgcmark.go:scanstack = materializeGCProg(.ptrdata, ) = (*byte)(unsafe.Pointer(.startAddr)) }for := uintptr(0); < .ptrdata; += sys.PtrSize {if *addb(, /(8*sys.PtrSize))>>(/sys.PtrSize&7)&1 != 0 {adjustpointer(, unsafe.Pointer(+)) } }if != nil {dematerializeGCProg() } } }returntrue}func ( *g, *adjustinfo) {adjustpointer(, unsafe.Pointer(&.sched.ctxt))if !framepointer_enabled {return }ifdebugCheckBP { := .sched.bpif != 0 && ( < .old.lo || >= .old.hi) {println("runtime: found invalid top frame pointer")print("bp=", hex(), " min=", hex(.old.lo), " max=", hex(.old.hi), "\n")throw("bad top frame pointer") } }adjustpointer(, unsafe.Pointer(&.sched.bp))}func ( *g, *adjustinfo) {// Adjust pointers in the Defer structs. // We need to do this first because we need to adjust the // defer.link fields so we always work on the new stack.adjustpointer(, unsafe.Pointer(&._defer))for := ._defer; != nil; = .link {adjustpointer(, unsafe.Pointer(&.fn))adjustpointer(, unsafe.Pointer(&.sp))adjustpointer(, unsafe.Pointer(&._panic))adjustpointer(, unsafe.Pointer(&.link))adjustpointer(, unsafe.Pointer(&.varp))adjustpointer(, unsafe.Pointer(&.fd)) }// Adjust defer argument blocks the same way we adjust active stack frames. // Note: this code is after the loop above, so that if a defer record is // stack allocated, we work on the copy in the new stack.tracebackdefers(, adjustframe, noescape(unsafe.Pointer()))}func ( *g, *adjustinfo) {// Panics are on stack and already adjusted. // Update pointer to head of list in G.adjustpointer(, unsafe.Pointer(&._panic))}func ( *g, *adjustinfo) {// the data elements pointed to by a SudoG structure // might be in the stack.for := .waiting; != nil; = .waitlink {adjustpointer(, unsafe.Pointer(&.elem)) }}func ( stack, byte) {for := .lo; < .hi; ++ { *(*byte)(unsafe.Pointer()) = }}func ( *g, stack) uintptr {varuintptrfor := .waiting; != nil; = .waitlink { := uintptr(.elem) + uintptr(.c.elemsize)if .lo <= && < .hi && > { = } }return}// syncadjustsudogs adjusts gp's sudogs and copies the part of gp's// stack they refer to while synchronizing with concurrent channel// operations. It returns the number of bytes of stack copied.func ( *g, uintptr, *adjustinfo) uintptr {if .waiting == nil {return0 }// Lock channels to prevent concurrent send/receive.var *hchanfor := .waiting; != nil; = .waitlink {if .c != {// There is a ranking cycle here between gscan bit and // hchan locks. Normally, we only allow acquiring hchan // locks and then getting a gscan bit. In this case, we // already have the gscan bit. We allow acquiring hchan // locks here as a special case, since a deadlock can't // happen because the G involved must already be // suspended. So, we get a special hchan lock rank here // that is lower than gscan, but doesn't allow acquiring // any other locks other than hchan.lockWithRank(&.c.lock, lockRankHchanLeaf) } = .c }// Adjust sudogs.adjustsudogs(, )// Copy the part of the stack the sudogs point in to // while holding the lock to prevent races on // send/receive slots.varuintptrif .sghi != 0 { := .old.hi - := + .delta = .sghi - memmove(unsafe.Pointer(), unsafe.Pointer(), ) }// Unlock channels. = nilfor := .waiting; != nil; = .waitlink {if .c != {unlock(&.c.lock) } = .c }return}// Copies gp's stack to a new stack of a different size.// Caller must have changed gp status to Gcopystack.func ( *g, uintptr) {if .syscallsp != 0 {throw("stack growth not allowed in system call") } := .stackif .lo == 0 {throw("nil stackbase") } := .hi - .sched.sp// allocate new stack := stackalloc(uint32())ifstackPoisonCopy != 0 {fillstack(, 0xfd) }ifstackDebug >= 1 {print("copystack gp=", , " [", hex(.lo), " ", hex(.hi-), " ", hex(.hi), "]", " -> [", hex(.lo), " ", hex(.hi-), " ", hex(.hi), "]/", , "\n") }// Compute adjustment.varadjustinfo .old = .delta = .hi - .hi// Adjust sudogs, synchronizing with channel ops if necessary. := if !.activeStackChans {if < .hi-.lo && atomic.Load8(&.parkingOnChan) != 0 {// It's not safe for someone to shrink this stack while we're actively // parking on a channel, but it is safe to grow since we do that // ourselves and explicitly don't want to synchronize with channels // since we could self-deadlock.throw("racy sudog adjustment due to parking on channel") }adjustsudogs(, &) } else {// sudogs may be pointing in to the stack and gp has // released channel locks, so other goroutines could // be writing to gp's stack. Find the highest such // pointer so we can handle everything there and below // carefully. (This shouldn't be far from the bottom // of the stack, so there's little cost in handling // everything below it carefully.) .sghi = findsghi(, )// Synchronize with channel ops and copy the part of // the stack they may interact with. -= syncadjustsudogs(, , &) }// Copy the stack (or the rest of it) to the new locationmemmove(unsafe.Pointer(.hi-), unsafe.Pointer(.hi-), )// Adjust remaining structures that have pointers into stacks. // We have to do most of these before we traceback the new // stack because gentraceback uses them.adjustctxt(, &)adjustdefers(, &)adjustpanics(, &)if .sghi != 0 { .sghi += .delta }// Swap out old stack for new one .stack = .stackguard0 = .lo + _StackGuard// NOTE: might clobber a preempt request .sched.sp = .hi - .stktopsp += .delta// Adjust pointers in the new stack.gentraceback(^uintptr(0), ^uintptr(0), 0, , 0, nil, 0x7fffffff, adjustframe, noescape(unsafe.Pointer(&)), 0)// free old stackifstackPoisonCopy != 0 {fillstack(, 0xfc) }stackfree()}// round x up to a power of 2.func ( int32) int32 { := uint(0)for1<< < { ++ }return1 << }// Called from runtime·morestack when more stack is needed.// Allocate larger stack and relocate to new stack.// Stack growth is multiplicative, for constant amortized cost.//// g->atomicstatus will be Grunning or Gscanrunning upon entry.// If the scheduler is trying to stop this g, then it will set preemptStop.//// This must be nowritebarrierrec because it can be called as part of// stack growth from other nowritebarrierrec functions, but the// compiler doesn't check this.////go:nowritebarrierrecfunc () { := getg()// TODO: double check all gp. shouldn't be getg().if .m.morebuf.g.ptr().stackguard0 == stackFork {throw("stack growth after fork") }if .m.morebuf.g.ptr() != .m.curg {print("runtime: newstack called from g=", hex(.m.morebuf.g), "\n"+"\tm=", .m, " m->curg=", .m.curg, " m->g0=", .m.g0, " m->gsignal=", .m.gsignal, "\n") := .m.morebuftraceback(.pc, .sp, .lr, .g.ptr())throw("runtime: wrong goroutine in newstack") } := .m.curgif .m.curg.throwsplit {// Update syscallsp, syscallpc in case traceback uses them. := .m.morebuf .syscallsp = .sp .syscallpc = .pc , := "(unknown)", uintptr(0) := findfunc(.sched.pc)if .valid() { = funcname() = .sched.pc - .entry }print("runtime: newstack at ", , "+", hex()," sp=", hex(.sched.sp), " stack=[", hex(.stack.lo), ", ", hex(.stack.hi), "]\n","\tmorebuf={pc:", hex(.pc), " sp:", hex(.sp), " lr:", hex(.lr), "}\n","\tsched={pc:", hex(.sched.pc), " sp:", hex(.sched.sp), " lr:", hex(.sched.lr), " ctxt:", .sched.ctxt, "}\n") .m.traceback = 2// Include runtime framestraceback(.pc, .sp, .lr, )throw("runtime: stack split at bad time") } := .m.morebuf .m.morebuf.pc = 0 .m.morebuf.lr = 0 .m.morebuf.sp = 0 .m.morebuf.g = 0// NOTE: stackguard0 may change underfoot, if another thread // is about to try to preempt gp. Read it just once and use that same // value now and below. := atomic.Loaduintptr(&.stackguard0) == stackPreempt// Be conservative about where we preempt. // We are interested in preempting user Go code, not runtime code. // If we're holding locks, mallocing, or preemption is disabled, don't // preempt. // This check is very early in newstack so that even the status change // from Grunning to Gwaiting and back doesn't happen in this case. // That status change by itself can be viewed as a small preemption, // because the GC might change Gwaiting to Gscanwaiting, and then // this goroutine has to wait for the GC to finish before continuing. // If the GC is in some way dependent on this goroutine (for example, // it needs a lock held by the goroutine), that small preemption turns // into a real deadlock.if {if !canPreemptM(.m) {// Let the goroutine keep running for now. // gp->preempt is set, so it will be preempted next time. .stackguard0 = .stack.lo + _StackGuardgogo(&.sched) // never return } }if .stack.lo == 0 {throw("missing stack in newstack") } := .sched.spifsys.ArchFamily == sys.AMD64 || sys.ArchFamily == sys.I386 || sys.ArchFamily == sys.WASM {// The call to morestack cost a word. -= sys.PtrSize }ifstackDebug >= 1 || < .stack.lo {print("runtime: newstack sp=", hex(), " stack=[", hex(.stack.lo), ", ", hex(.stack.hi), "]\n","\tmorebuf={pc:", hex(.pc), " sp:", hex(.sp), " lr:", hex(.lr), "}\n","\tsched={pc:", hex(.sched.pc), " sp:", hex(.sched.sp), " lr:", hex(.sched.lr), " ctxt:", .sched.ctxt, "}\n") }if < .stack.lo {print("runtime: gp=", , ", goid=", .goid, ", gp->status=", hex(readgstatus()), "\n ")print("runtime: split stack overflow: ", hex(), " < ", hex(.stack.lo), "\n")throw("runtime: split stack overflow") }if {if == .m.g0 {throw("runtime: preempt g0") }if .m.p == 0 && .m.locks == 0 {throw("runtime: g is running but p is not") }if .preemptShrink {// We're at a synchronous safe point now, so // do the pending stack shrink. .preemptShrink = falseshrinkstack() }if .preemptStop {preemptPark() // never returns }// Act like goroutine called runtime.Gosched.gopreempt_m() // never return }// Allocate a bigger segment and move the stack. := .stack.hi - .stack.lo := * 2// Make sure we grow at least as much as needed to fit the new frame. // (This is just an optimization - the caller of morestack will // recheck the bounds on return.)if := findfunc(.sched.pc); .valid() { := uintptr(funcMaxSPDelta())for - < +_StackGuard { *= 2 } }if > maxstacksize || > maxstackceiling {ifmaxstacksize < maxstackceiling {print("runtime: goroutine stack exceeds ", maxstacksize, "-byte limit\n") } else {print("runtime: goroutine stack exceeds ", maxstackceiling, "-byte limit\n") }print("runtime: sp=", hex(), " stack=[", hex(.stack.lo), ", ", hex(.stack.hi), "]\n")throw("stack overflow") }// The goroutine must be executing in order to call newstack, // so it must be Grunning (or Gscanrunning).casgstatus(, _Grunning, _Gcopystack)// The concurrent GC will not scan the stack while we are doing the copy since // the gp is in a Gcopystack status.copystack(, )ifstackDebug >= 1 {print("stack grow done\n") }casgstatus(, _Gcopystack, _Grunning)gogo(&.sched)}//go:nosplitfunc () { *(*uint8)(nil) = 0}// adjust Gobuf as if it executed a call to fn// and then did an immediate gosave.func ( *gobuf, *funcval) {varunsafe.Pointerif != nil { = unsafe.Pointer(.fn) } else { = unsafe.Pointer(funcPC(nilfunc)) }gostartcall(, , unsafe.Pointer())}// isShrinkStackSafe returns whether it's safe to attempt to shrink// gp's stack. Shrinking the stack is only safe when we have precise// pointer maps for all frames on the stack.func ( *g) bool {// We can't copy the stack if we're in a syscall. // The syscall might have pointers into the stack and // often we don't have precise pointer maps for the innermost // frames. // // We also can't copy the stack if we're at an asynchronous // safe-point because we don't have precise pointer maps for // all frames. // // We also can't *shrink* the stack in the window between the // goroutine calling gopark to park on a channel and // gp.activeStackChans being set.return .syscallsp == 0 && !.asyncSafePoint && atomic.Load8(&.parkingOnChan) == 0}// Maybe shrink the stack being used by gp.//// gp must be stopped and we must own its stack. It may be in// _Grunning, but only if this is our own user G.func ( *g) {if .stack.lo == 0 {throw("missing stack in shrinkstack") }if := readgstatus(); &_Gscan == 0 {// We don't own the stack via _Gscan. We could still // own it if this is our own user G and we're on the // system stack.if !( == getg().m.curg && getg() != getg().m.curg && == _Grunning) {// We don't own the stack.throw("bad status in shrinkstack") } }if !isShrinkStackSafe() {throw("shrinkstack at bad time") }// Check for self-shrinks while in a libcall. These may have // pointers into the stack disguised as uintptrs, but these // code paths should all be nosplit.if == getg().m.curg && .m.libcallsp != 0 {throw("shrinking stack in libcall") }ifdebug.gcshrinkstackoff > 0 {return } := findfunc(.startpc)if .valid() && .funcID == funcID_gcBgMarkWorker {// We're not allowed to shrink the gcBgMarkWorker // stack (see gcBgMarkWorker for explanation).return } := .stack.hi - .stack.lo := / 2// Don't shrink the allocation below the minimum-sized stack // allocation.if < _FixedStack {return }// Compute how much of the stack is currently in use and only // shrink the stack if gp is using less than a quarter of its // current stack. The currently used stack includes everything // down to the SP plus the stack guard space that ensures // there's room for nosplit functions. := .stack.hi - .stack.loif := .stack.hi - .sched.sp + _StackLimit; >= /4 {return }ifstackDebug > 0 {print("shrinking stack ", , "->", , "\n") }copystack(, )}// freeStackSpans frees unused stack spans at the end of GC.func () {// Scan stack pools for empty stack spans.for := rangestackpool {lock(&stackpool[].item.mu) := &stackpool[].item.spanfor := .first; != nil; { := .nextif .allocCount == 0 { .remove() .manualFreeList = 0osStackFree()mheap_.freeManual(, spanAllocStack) } = }unlock(&stackpool[].item.mu) }// Free large stack spans.lock(&stackLarge.lock)for := rangestackLarge.free {for := stackLarge.free[].first; != nil; { := .nextstackLarge.free[].remove()osStackFree()mheap_.freeManual(, spanAllocStack) = } }unlock(&stackLarge.lock)}// getStackMap returns the locals and arguments live pointer maps, and// stack object list for frame.func ( *stkframe, *pcvalueCache, bool) (, bitvector, []stackObjectRecord) { := .continpcif == 0 {// Frame is dead. Return empty bitvectors.return } := .fn := int32(-1)if != .entry {// Back up to the CALL. If we're at the function entry // point, we want to use the entry map (-1), even if // the first instruction of the function changes the // stack map. -- = pcdatavalue(, _PCDATA_StackMapIndex, , ) }if == -1 {// We do not have a valid pcdata value but there might be a // stackmap for this function. It is likely that we are looking // at the function prologue, assume so and hope for the best. = 0 }// Local variables. := .varp - .spvaruintptrswitchsys.ArchFamily {casesys.ARM64: = sys.SpAligndefault: = sys.MinFrameSize }if > { := := (*stackmap)(funcdata(, _FUNCDATA_LocalsPointerMaps))if == nil || .n <= 0 {print("runtime: frame ", funcname(), " untyped locals ", hex(.varp-), "+", hex(), "\n")throw("missing stackmap") }// If nbit == 0, there's no work to do.if .nbit > 0 {if < 0 || >= .n {// don't know where we areprint("runtime: pcdata is ", , " and ", .n, " locals stack map entries for ", funcname(), " (targetpc=", hex(), ")\n")throw("bad symbol table") } = stackmapdata(, )ifstackDebug >= 3 && {print(" locals ", , "/", .n, " ", .n, " words ", .bytedata, "\n") } } elseifstackDebug >= 3 && {print(" no locals to adjust\n") } }// Arguments.if .arglen > 0 {if .argmap != nil {// argmap is set when the function is reflect.makeFuncStub or reflect.methodValueCall. // In this case, arglen specifies how much of the args section is actually live. // (It could be either all the args + results, or just the args.) = *.argmap := int32(.arglen / sys.PtrSize)if < .n { .n = // Don't use more of the arguments than arglen. } } else { := (*stackmap)(funcdata(, _FUNCDATA_ArgsPointerMaps))if == nil || .n <= 0 {print("runtime: frame ", funcname(), " untyped args ", hex(.argp), "+", hex(.arglen), "\n")throw("missing stackmap") }if < 0 || >= .n {// don't know where we areprint("runtime: pcdata is ", , " and ", .n, " args stack map entries for ", funcname(), " (targetpc=", hex(), ")\n")throw("bad symbol table") }if .nbit > 0 { = stackmapdata(, ) } } }// stack objects. := funcdata(, _FUNCDATA_StackObjects)if != nil { := *(*uintptr)() = add(, sys.PtrSize) *(*slice)(unsafe.Pointer(&)) = slice{array: noescape(), len: int(), cap: int()}// Note: the noescape above is needed to keep // getStackMap from "leaking param content: // frame". That leak propagates up to getgcmask, then // GCMask, then verifyGCInfo, which converts the stack // gcinfo tests into heap gcinfo tests :( }return}// A stackObjectRecord is generated by the compiler for each stack object in a stack frame.// This record must match the generator code in cmd/compile/internal/gc/ssa.go:emitStackObjects.typestackObjectRecordstruct {// offset in frame // if negative, offset from varp // if non-negative, offset from argp off int typ *_type}// This is exported as ABI0 via linkname so obj can call it.////go:nosplit//go:linkname morestackcfunc () {throw("attempt to execute system stack code on user stack")}