Source File
proc.go
Belonging Package
runtime
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
)
var buildVersion = sys.TheVersion
// set using cmd/go/internal/modload.ModInfoProg
var modinfo string
// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
// M must have an associated P to execute Go code, however it can be
// blocked or in a syscall w/o an associated P.
//
// Design doc at https://golang.org/s/go11sched.
// Worker thread parking/unparking.
// We need to balance between keeping enough running worker threads to utilize
// available hardware parallelism and parking excessive running worker threads
// to conserve CPU resources and power. This is not simple for two reasons:
// (1) scheduler state is intentionally distributed (in particular, per-P work
// queues), so it is not possible to compute global predicates on fast paths;
// (2) for optimal thread management we would need to know the future (don't park
// a worker thread when a new goroutine will be readied in near future).
//
// Three rejected approaches that would work badly:
// 1. Centralize all scheduler state (would inhibit scalability).
// 2. Direct goroutine handoff. That is, when we ready a new goroutine and there
// is a spare P, unpark a thread and handoff it the thread and the goroutine.
// This would lead to thread state thrashing, as the thread that readied the
// goroutine can be out of work the very next moment, we will need to park it.
// Also, it would destroy locality of computation as we want to preserve
// dependent goroutines on the same thread; and introduce additional latency.
// 3. Unpark an additional thread whenever we ready a goroutine and there is an
// idle P, but don't do handoff. This would lead to excessive thread parking/
// unparking as the additional threads will instantly park without discovering
// any work to do.
//
// The current approach:
// We unpark an additional thread when we ready a goroutine if (1) there is an
// idle P and there are no "spinning" worker threads. A worker thread is considered
// spinning if it is out of local work and did not find work in global run queue/
// netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning.
// Threads unparked this way are also considered spinning; we don't do goroutine
// handoff so such threads are out of work initially. Spinning threads do some
// spinning looking for work in per-P run queues before parking. If a spinning
// thread finds work it takes itself out of the spinning state and proceeds to
// execution. If it does not find work it takes itself out of the spinning state
// and then parks.
// If there is at least one spinning thread (sched.nmspinning>1), we don't unpark
// new threads when readying goroutines. To compensate for that, if the last spinning
// thread finds work and stops spinning, it must unpark a new spinning thread.
// This approach smooths out unjustified spikes of thread unparking,
// but at the same time guarantees eventual maximal CPU parallelism utilization.
//
// The main implementation complication is that we need to be very careful during
// spinning->non-spinning thread transition. This transition can race with submission
// of a new goroutine, and either one part or another needs to unpark another worker
// thread. If they both fail to do that, we can end up with semi-persistent CPU
// underutilization. The general pattern for goroutine readying is: submit a goroutine
// to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning.
// The general pattern for spinning->non-spinning transition is: decrement nmspinning,
// #StoreLoad-style memory barrier, check all per-P work queues for new work.
// Note that all this complexity does not apply to global run queue as we are not
// sloppy about thread unparking when submitting to global queue. Also see comments
// for nmspinning manipulation.
var (
m0 m
g0 g
mcache0 *mcache
raceprocctx0 uintptr
)
//go:linkname runtime_inittask runtime..inittask
var runtime_inittask initTask
//go:linkname main_inittask main..inittask
var main_inittask initTask
// main_init_done is a signal used by cgocallbackg that initialization
// has been completed. It is made before _cgo_notify_runtime_init_done,
// so all cgo calls can rely on it existing. When main_init is complete,
// it is closed, meaning cgocallbackg can reliably receive from it.
var main_init_done chan bool
//go:linkname main_main main.main
func ()
// mainStarted indicates that the main M has started.
var mainStarted bool
// runtimeInitTime is the nanotime() at which the runtime started.
var runtimeInitTime int64
// Value to use for signal mask for newly created M's.
var initSigmask sigset
// The main goroutine.
func () {
:= getg()
// Racectx of m0->g0 is used only as the parent of the main goroutine.
// It must not be used for anything else.
.m.g0.racectx = 0
// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
// Using decimal instead of binary GB and MB because
// they look nicer in the stack overflow failure message.
if sys.PtrSize == 8 {
maxstacksize = 1000000000
} else {
maxstacksize = 250000000
}
// An upper limit for max stack size. Used to avoid random crashes
// after calling SetMaxStack and trying to allocate a stack that is too big,
// since stackalloc works with 32-bit sizes.
maxstackceiling = 2 * maxstacksize
// Allow newproc to start new Ms.
mainStarted = true
if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon
// For runtime_syscall_doAllThreadsSyscall, we
// register sysmon is not ready for the world to be
// stopped.
atomic.Store(&sched.sysmonStarting, 1)
systemstack(func() {
newm(sysmon, nil, -1)
})
}
// Lock the main goroutine onto this, the main OS thread,
// during initialization. Most programs won't care, but a few
// do require certain calls to be made by the main thread.
// Those can arrange for main.main to run in the main thread
// by calling runtime.LockOSThread during initialization
// to preserve the lock.
lockOSThread()
if .m != &m0 {
throw("runtime.main not on m0")
}
m0.doesPark = true
// Record when the world started.
// Must be before doInit for tracing init.
runtimeInitTime = nanotime()
if runtimeInitTime == 0 {
throw("nanotime returning zero")
}
if debug.inittrace != 0 {
inittrace.id = getg().goid
inittrace.active = true
}
doInit(&runtime_inittask) // Must be before defer.
// Defer unlock so that runtime.Goexit during init does the unlock too.
:= true
defer func() {
if {
unlockOSThread()
}
}()
gcenable()
main_init_done = make(chan bool)
if iscgo {
if _cgo_thread_start == nil {
throw("_cgo_thread_start missing")
}
if GOOS != "windows" {
if _cgo_setenv == nil {
throw("_cgo_setenv missing")
}
if _cgo_unsetenv == nil {
throw("_cgo_unsetenv missing")
}
}
if _cgo_notify_runtime_init_done == nil {
throw("_cgo_notify_runtime_init_done missing")
}
// Start the template thread in case we enter Go from
// a C-created thread and need to create a new thread.
startTemplateThread()
cgocall(_cgo_notify_runtime_init_done, nil)
}
doInit(&main_inittask)
// Disable init tracing after main init done to avoid overhead
// of collecting statistics in malloc and newproc
inittrace.active = false
close(main_init_done)
= false
unlockOSThread()
if isarchive || islibrary {
// A program compiled with -buildmode=c-archive or c-shared
// has a main, but it is not executed.
return
}
:= main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
()
if raceenabled {
racefini()
}
// Make racy client program work: if panicking on
// another goroutine at the same time as main returns,
// let the other goroutine finish printing the panic trace.
// Once it does, it will exit. See issues 3934 and 20018.
if atomic.Load(&runningPanicDefers) != 0 {
// Running deferred functions should not take long.
for := 0; < 1000; ++ {
if atomic.Load(&runningPanicDefers) == 0 {
break
}
Gosched()
}
}
if atomic.Load(&panicking) != 0 {
gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1)
}
exit(0)
for {
var *int32
* = 0
}
}
// os_beforeExit is called from os.Exit(0).
//go:linkname os_beforeExit os.runtime_beforeExit
func () {
if raceenabled {
racefini()
}
}
// start forcegc helper goroutine
func () {
go forcegchelper()
}
func () {
forcegc.g = getg()
lockInit(&forcegc.lock, lockRankForcegc)
for {
lock(&forcegc.lock)
if forcegc.idle != 0 {
throw("forcegc: phase error")
}
atomic.Store(&forcegc.idle, 1)
goparkunlock(&forcegc.lock, waitReasonForceGCIdle, traceEvGoBlock, 1)
// this goroutine is explicitly resumed by sysmon
if debug.gctrace > 0 {
println("GC forced")
}
// Time-triggered, fully concurrent.
gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()})
}
}
//go:nosplit
// Gosched yields the processor, allowing other goroutines to run. It does not
// suspend the current goroutine, so execution resumes automatically.
func () {
checkTimeouts()
mcall(gosched_m)
}
// goschedguarded yields the processor like gosched, but also checks
// for forbidden states and opts out of the yield in those cases.
//go:nosplit
func () {
mcall(goschedguarded_m)
}
// Puts the current goroutine into a waiting state and calls unlockf on the
// system stack.
//
// If unlockf returns false, the goroutine is resumed.
//
// unlockf must not access this G's stack, as it may be moved between
// the call to gopark and the call to unlockf.
//
// Note that because unlockf is called after putting the G into a waiting
// state, the G may have already been readied by the time unlockf is called
// unless there is external synchronization preventing the G from being
// readied. If unlockf returns false, it must guarantee that the G cannot be
// externally readied.
//
// Reason explains why the goroutine has been parked. It is displayed in stack
// traces and heap dumps. Reasons should be unique and descriptive. Do not
// re-use reasons, add new ones.
func ( func(*g, unsafe.Pointer) bool, unsafe.Pointer, waitReason, byte, int) {
if != waitReasonSleep {
checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy
}
:= acquirem()
:= .curg
:= readgstatus()
if != _Grunning && != _Gscanrunning {
throw("gopark: bad g status")
}
.waitlock =
.waitunlockf =
.waitreason =
.waittraceev =
.waittraceskip =
releasem()
// can't do anything that might move the G between Ms here.
mcall(park_m)
}
// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling goready(gp).
func ( *mutex, waitReason, byte, int) {
gopark(parkunlock_c, unsafe.Pointer(), , , )
}
func ( *g, int) {
systemstack(func() {
ready(, , true)
})
}
//go:nosplit
func () *sudog {
// Delicate dance: the semaphore implementation calls
// acquireSudog, acquireSudog calls new(sudog),
// new calls malloc, malloc can call the garbage collector,
// and the garbage collector calls the semaphore implementation
// in stopTheWorld.
// Break the cycle by doing acquirem/releasem around new(sudog).
// The acquirem/releasem increments m.locks during new(sudog),
// which keeps the garbage collector from being invoked.
:= acquirem()
:= .p.ptr()
if len(.sudogcache) == 0 {
lock(&sched.sudoglock)
// First, try to grab a batch from central cache.
for len(.sudogcache) < cap(.sudogcache)/2 && sched.sudogcache != nil {
:= sched.sudogcache
sched.sudogcache = .next
.next = nil
.sudogcache = append(.sudogcache, )
}
unlock(&sched.sudoglock)
// If the central cache is empty, allocate a new one.
if len(.sudogcache) == 0 {
.sudogcache = append(.sudogcache, new(sudog))
}
}
:= len(.sudogcache)
:= .sudogcache[-1]
.sudogcache[-1] = nil
.sudogcache = .sudogcache[:-1]
if .elem != nil {
throw("acquireSudog: found s.elem != nil in cache")
}
releasem()
return
}
//go:nosplit
func ( *sudog) {
if .elem != nil {
throw("runtime: sudog with non-nil elem")
}
if .isSelect {
throw("runtime: sudog with non-false isSelect")
}
if .next != nil {
throw("runtime: sudog with non-nil next")
}
if .prev != nil {
throw("runtime: sudog with non-nil prev")
}
if .waitlink != nil {
throw("runtime: sudog with non-nil waitlink")
}
if .c != nil {
throw("runtime: sudog with non-nil c")
}
:= getg()
if .param != nil {
throw("runtime: releaseSudog with non-nil gp.param")
}
:= acquirem() // avoid rescheduling to another P
:= .p.ptr()
if len(.sudogcache) == cap(.sudogcache) {
// Transfer half of local cache to the central cache.
var , *sudog
for len(.sudogcache) > cap(.sudogcache)/2 {
:= len(.sudogcache)
:= .sudogcache[-1]
.sudogcache[-1] = nil
.sudogcache = .sudogcache[:-1]
if == nil {
=
} else {
.next =
}
=
}
lock(&sched.sudoglock)
.next = sched.sudogcache
sched.sudogcache =
unlock(&sched.sudoglock)
}
.sudogcache = append(.sudogcache, )
releasem()
}
// funcPC returns the entry PC of the function f.
// It assumes that f is a func value. Otherwise the behavior is undefined.
// CAREFUL: In programs with plugins, funcPC can return different values
// for the same function (because there are actually multiple copies of
// the same function in the address space). To be safe, don't use the
// results of this function in any == expression. It is only safe to
// use the result as an address at which to start executing code.
//go:nosplit
func ( interface{}) uintptr {
return *(*uintptr)(efaceOf(&).data)
}
// called from assembly
func ( func(*g)) {
throw("runtime: mcall called on m->g0 stack")
}
func ( func(*g)) {
throw("runtime: mcall function returned")
}
func () {
panic(plainError("arg size to reflect.call more than 1GB"))
}
var badmorestackg0Msg = "fatal: morestack on g0\n"
//go:nosplit
//go:nowritebarrierrec
func () {
:= stringStructOf(&badmorestackg0Msg)
write(2, .str, int32(.len))
}
var badmorestackgsignalMsg = "fatal: morestack on gsignal\n"
//go:nosplit
//go:nowritebarrierrec
func () {
:= stringStructOf(&badmorestackgsignalMsg)
write(2, .str, int32(.len))
}
//go:nosplit
func () {
throw("ctxt != 0")
}
func () bool {
:= getg()
return .lockedm != 0 && .m.lockedg != 0
}
var (
// allgs contains all Gs ever created (including dead Gs), and thus
// never shrinks.
//
// Access via the slice is protected by allglock or stop-the-world.
// Readers that cannot take the lock may (carefully!) use the atomic
// variables below.
allglock mutex
allgs []*g
// allglen and allgptr are atomic variables that contain len(allg) and
// &allg[0] respectively. Proper ordering depends on totally-ordered
// loads and stores. Writes are protected by allglock.
//
// allgptr is updated before allglen. Readers should read allglen
// before allgptr to ensure that allglen is always <= len(allgptr). New
// Gs appended during the race can be missed. For a consistent view of
// all Gs, allglock must be held.
//
// allgptr copies should always be stored as a concrete type or
// unsafe.Pointer, not uintptr, to ensure that GC can still reach it
// even if it points to a stale array.
allglen uintptr
allgptr **g
)
func ( *g) {
if readgstatus() == _Gidle {
throw("allgadd: bad status Gidle")
}
lock(&allglock)
allgs = append(allgs, )
if &allgs[0] != allgptr {
atomicstorep(unsafe.Pointer(&allgptr), unsafe.Pointer(&allgs[0]))
}
atomic.Storeuintptr(&allglen, uintptr(len(allgs)))
unlock(&allglock)
}
// atomicAllG returns &allgs[0] and len(allgs) for use with atomicAllGIndex.
func () (**g, uintptr) {
:= atomic.Loaduintptr(&allglen)
:= (**g)(atomic.Loadp(unsafe.Pointer(&allgptr)))
return ,
}
// atomicAllGIndex returns ptr[i] with the allgptr returned from atomicAllG.
func ( **g, uintptr) *g {
return *(**g)(add(unsafe.Pointer(), *sys.PtrSize))
}
const (
// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
_GoidCacheBatch = 16
)
// cpuinit extracts the environment variable GODEBUG from the environment on
// Unix-like operating systems and calls internal/cpu.Initialize.
func () {
const = "GODEBUG="
var string
switch GOOS {
case "aix", "darwin", "ios", "dragonfly", "freebsd", "netbsd", "openbsd", "illumos", "solaris", "linux":
cpu.DebugOptions = true
// Similar to goenv_unix but extracts the environment value for
// GODEBUG directly.
// TODO(moehrmann): remove when general goenvs() can be called before cpuinit()
:= int32(0)
for argv_index(argv, argc+1+) != nil {
++
}
for := int32(0); < ; ++ {
:= argv_index(argv, argc+1+)
:= *(*string)(unsafe.Pointer(&stringStruct{unsafe.Pointer(), findnull()}))
if hasPrefix(, ) {
= gostring()[len():]
break
}
}
}
cpu.Initialize()
// Support cpu feature variables are used in code generated by the compiler
// to guard execution of instructions that can not be assumed to be always supported.
x86HasPOPCNT = cpu.X86.HasPOPCNT
x86HasSSE41 = cpu.X86.HasSSE41
x86HasFMA = cpu.X86.HasFMA
armHasVFPv4 = cpu.ARM.HasVFPv4
arm64HasATOMICS = cpu.ARM64.HasATOMICS
}
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call runtime·mstart
//
// The new G calls runtime·main.
func () {
lockInit(&sched.lock, lockRankSched)
lockInit(&sched.sysmonlock, lockRankSysmon)
lockInit(&sched.deferlock, lockRankDefer)
lockInit(&sched.sudoglock, lockRankSudog)
lockInit(&deadlock, lockRankDeadlock)
lockInit(&paniclk, lockRankPanic)
lockInit(&allglock, lockRankAllg)
lockInit(&allpLock, lockRankAllp)
lockInit(&reflectOffs.lock, lockRankReflectOffs)
lockInit(&finlock, lockRankFin)
lockInit(&trace.bufLock, lockRankTraceBuf)
lockInit(&trace.stringsLock, lockRankTraceStrings)
lockInit(&trace.lock, lockRankTrace)
lockInit(&cpuprof.lock, lockRankCpuprof)
lockInit(&trace.stackTab.lock, lockRankTraceStackTab)
// Enforce that this lock is always a leaf lock.
// All of this lock's critical sections should be
// extremely short.
lockInit(&memstats.heapStats.noPLock, lockRankLeafRank)
// raceinit must be the first call to race detector.
// In particular, it must be done before mallocinit below calls racemapshadow.
:= getg()
if raceenabled {
.racectx, raceprocctx0 = raceinit()
}
sched.maxmcount = 10000
// The world starts stopped.
worldStopped()
moduledataverify()
stackinit()
mallocinit()
fastrandinit() // must run before mcommoninit
mcommoninit(.m, -1)
cpuinit() // must run before alginit
alginit() // maps must not be used before this call
modulesinit() // provides activeModules
typelinksinit() // uses maps, activeModules
itabsinit() // uses activeModules
sigsave(&.m.sigmask)
initSigmask = .m.sigmask
goargs()
goenvs()
parsedebugvars()
gcinit()
lock(&sched.lock)
sched.lastpoll = uint64(nanotime())
:= ncpu
if , := atoi32(gogetenv("GOMAXPROCS")); && > 0 {
=
}
if procresize() != nil {
throw("unknown runnable goroutine during bootstrap")
}
unlock(&sched.lock)
// World is effectively started now, as P's can run.
worldStarted()
// For cgocheck > 1, we turn on the write barrier at all times
// and check all pointer writes. We can't do this until after
// procresize because the write barrier needs a P.
if debug.cgocheck > 1 {
writeBarrier.cgo = true
writeBarrier.enabled = true
for , := range allp {
.wbBuf.reset()
}
}
if buildVersion == "" {
// Condition should never trigger. This code just serves
// to ensure runtime·buildVersion is kept in the resulting binary.
buildVersion = "unknown"
}
if len(modinfo) == 1 {
// Condition should never trigger. This code just serves
// to ensure runtime·modinfo is kept in the resulting binary.
modinfo = ""
}
}
func ( *g) {
:= getg()
print("runtime: gp: gp=", , ", goid=", .goid, ", gp->atomicstatus=", readgstatus(), "\n")
print("runtime: g: g=", , ", goid=", .goid, ", g->atomicstatus=", readgstatus(), "\n")
}
// sched.lock must be held.
func () {
assertLockHeld(&sched.lock)
if mcount() > sched.maxmcount {
print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
throw("thread exhaustion")
}
}
// mReserveID returns the next ID to use for a new m. This new m is immediately
// considered 'running' by checkdead.
//
// sched.lock must be held.
func () int64 {
assertLockHeld(&sched.lock)
if sched.mnext+1 < sched.mnext {
throw("runtime: thread ID overflow")
}
:= sched.mnext
sched.mnext++
checkmcount()
return
}
// Pre-allocated ID may be passed as 'id', or omitted by passing -1.
func ( *m, int64) {
:= getg()
// g0 stack won't make sense for user (and is not necessary unwindable).
if != .m.g0 {
callers(1, .createstack[:])
}
lock(&sched.lock)
if >= 0 {
.id =
} else {
.id = mReserveID()
}
.fastrand[0] = uint32(int64Hash(uint64(.id), fastrandseed))
.fastrand[1] = uint32(int64Hash(uint64(cputicks()), ^fastrandseed))
if .fastrand[0]|.fastrand[1] == 0 {
.fastrand[1] = 1
}
mpreinit()
if .gsignal != nil {
.gsignal.stackguard1 = .gsignal.stack.lo + _StackGuard
}
// Add to allm so garbage collector doesn't free g->m
// when it is just in a register or thread-local storage.
.alllink = allm
// NumCgoCall() iterates over allm w/o schedlock,
// so we need to publish it safely.
atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer())
unlock(&sched.lock)
// Allocate memory to hold a cgo traceback if the cgo call crashes.
if iscgo || GOOS == "solaris" || GOOS == "illumos" || GOOS == "windows" {
.cgoCallers = new(cgoCallers)
}
}
var fastrandseed uintptr
func () {
:= (*[unsafe.Sizeof(fastrandseed)]byte)(unsafe.Pointer(&fastrandseed))[:]
getRandomData()
}
// Mark gp ready to run.
func ( *g, int, bool) {
if trace.enabled {
traceGoUnpark(, )
}
:= readgstatus()
// Mark runnable.
:= getg()
:= acquirem() // disable preemption because it can be holding p in a local var
if &^_Gscan != _Gwaiting {
dumpgstatus()
throw("bad g->status in ready")
}
// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
casgstatus(, _Gwaiting, _Grunnable)
runqput(.m.p.ptr(), , )
wakep()
releasem()
}
// freezeStopWait is a large value that freezetheworld sets
// sched.stopwait to in order to request that all Gs permanently stop.
const freezeStopWait = 0x7fffffff
// freezing is set to non-zero if the runtime is trying to freeze the
// world.
var freezing uint32
// Similar to stopTheWorld but best-effort and can be called several times.
// There is no reverse operation, used during crashing.
// This function must not lock any mutexes.
func () {
atomic.Store(&freezing, 1)
// stopwait and preemption requests can be lost
// due to races with concurrently executing threads,
// so try several times
for := 0; < 5; ++ {
// this should tell the scheduler to not start any new goroutines
sched.stopwait = freezeStopWait
atomic.Store(&sched.gcwaiting, 1)
// this should stop running goroutines
if !preemptall() {
break // no running goroutines
}
usleep(1000)
}
// to be sure
usleep(1000)
preemptall()
usleep(1000)
}
// All reads and writes of g's status go through readgstatus, casgstatus
// castogscanstatus, casfrom_Gscanstatus.
//go:nosplit
func ( *g) uint32 {
return atomic.Load(&.atomicstatus)
}
// The Gscanstatuses are acting like locks and this releases them.
// If it proves to be a performance hit we should be able to make these
// simple atomic stores but for now we are going to throw if
// we see an inconsistent state.
func ( *g, , uint32) {
:= false
// Check that transition is valid.
switch {
default:
print("runtime: casfrom_Gscanstatus bad oldval gp=", , ", oldval=", hex(), ", newval=", hex(), "\n")
dumpgstatus()
throw("casfrom_Gscanstatus:top gp->status is not in scan state")
case _Gscanrunnable,
_Gscanwaiting,
_Gscanrunning,
_Gscansyscall,
_Gscanpreempted:
if == &^_Gscan {
= atomic.Cas(&.atomicstatus, , )
}
}
if ! {
print("runtime: casfrom_Gscanstatus failed gp=", , ", oldval=", hex(), ", newval=", hex(), "\n")
dumpgstatus()
throw("casfrom_Gscanstatus: gp->status is not in scan state")
}
releaseLockRank(lockRankGscan)
}
// This will return false if the gp is not in the expected status and the cas fails.
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
func ( *g, , uint32) bool {
switch {
case _Grunnable,
_Grunning,
_Gwaiting,
_Gsyscall:
if == |_Gscan {
:= atomic.Cas(&.atomicstatus, , )
if {
acquireLockRank(lockRankGscan)
}
return
}
}
print("runtime: castogscanstatus oldval=", hex(), " newval=", hex(), "\n")
throw("castogscanstatus")
panic("not reached")
}
// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
// and casfrom_Gscanstatus instead.
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
// put it in the Gscan state is finished.
//go:nosplit
func ( *g, , uint32) {
if (&_Gscan != 0) || (&_Gscan != 0) || == {
systemstack(func() {
print("runtime: casgstatus: oldval=", hex(), " newval=", hex(), "\n")
throw("casgstatus: bad incoming values")
})
}
acquireLockRank(lockRankGscan)
releaseLockRank(lockRankGscan)
// See https://golang.org/cl/21503 for justification of the yield delay.
const = 5 * 1000
var int64
// loop if gp->atomicstatus is in a scan state giving
// GC time to finish and change the state to oldval.
for := 0; !atomic.Cas(&.atomicstatus, , ); ++ {
if == _Gwaiting && .atomicstatus == _Grunnable {
throw("casgstatus: waiting for Gwaiting but is Grunnable")
}
if == 0 {
= nanotime() +
}
if nanotime() < {
for := 0; < 10 && .atomicstatus != ; ++ {
procyield(1)
}
} else {
osyield()
= nanotime() + /2
}
}
}
// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
// Returns old status. Cannot call casgstatus directly, because we are racing with an
// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
// it would loop waiting for the status to go back to Gwaiting, which it never will.
//go:nosplit
func ( *g) uint32 {
for {
:= readgstatus() &^ _Gscan
if != _Gwaiting && != _Grunnable {
throw("copystack: bad status, not Gwaiting or Grunnable")
}
if atomic.Cas(&.atomicstatus, , _Gcopystack) {
return
}
}
}
// casGToPreemptScan transitions gp from _Grunning to _Gscan|_Gpreempted.
//
// TODO(austin): This is the only status operation that both changes
// the status and locks the _Gscan bit. Rethink this.
func ( *g, , uint32) {
if != _Grunning || != _Gscan|_Gpreempted {
throw("bad g transition")
}
acquireLockRank(lockRankGscan)
for !atomic.Cas(&.atomicstatus, _Grunning, _Gscan|_Gpreempted) {
}
}
// casGFromPreempted attempts to transition gp from _Gpreempted to
// _Gwaiting. If successful, the caller is responsible for
// re-scheduling gp.
func ( *g, , uint32) bool {
if != _Gpreempted || != _Gwaiting {
throw("bad g transition")
}
return atomic.Cas(&.atomicstatus, _Gpreempted, _Gwaiting)
}
// stopTheWorld stops all P's from executing goroutines, interrupting
// all goroutines at GC safe points and records reason as the reason
// for the stop. On return, only the current goroutine's P is running.
// stopTheWorld must not be called from a system stack and the caller
// must not hold worldsema. The caller must call startTheWorld when
// other P's should resume execution.
//
// stopTheWorld is safe for multiple goroutines to call at the
// same time. Each will execute its own stop, and the stops will
// be serialized.
//
// This is also used by routines that do stack dumps. If the system is
// in panic or being exited, this may not reliably stop all
// goroutines.
func ( string) {
semacquire(&worldsema)
:= getg()
.m.preemptoff =
systemstack(func() {
// Mark the goroutine which called stopTheWorld preemptible so its
// stack may be scanned.
// This lets a mark worker scan us while we try to stop the world
// since otherwise we could get in a mutual preemption deadlock.
// We must not modify anything on the G stack because a stack shrink
// may occur. A stack shrink is otherwise OK though because in order
// to return from this function (and to leave the system stack) we
// must have preempted all goroutines, including any attempting
// to scan our stack, in which case, any stack shrinking will
// have already completed by the time we exit.
casgstatus(, _Grunning, _Gwaiting)
stopTheWorldWithSema()
casgstatus(, _Gwaiting, _Grunning)
})
}
// startTheWorld undoes the effects of stopTheWorld.
func () {
systemstack(func() { startTheWorldWithSema(false) })
// worldsema must be held over startTheWorldWithSema to ensure
// gomaxprocs cannot change while worldsema is held.
//
// Release worldsema with direct handoff to the next waiter, but
// acquirem so that semrelease1 doesn't try to yield our time.
//
// Otherwise if e.g. ReadMemStats is being called in a loop,
// it might stomp on other attempts to stop the world, such as
// for starting or ending GC. The operation this blocks is
// so heavy-weight that we should just try to be as fair as
// possible here.
//
// We don't want to just allow us to get preempted between now
// and releasing the semaphore because then we keep everyone
// (including, for example, GCs) waiting longer.
:= acquirem()
.preemptoff = ""
semrelease1(&worldsema, true, 0)
releasem()
}
// stopTheWorldGC has the same effect as stopTheWorld, but blocks
// until the GC is not running. It also blocks a GC from starting
// until startTheWorldGC is called.
func ( string) {
semacquire(&gcsema)
stopTheWorld()
}
// startTheWorldGC undoes the effects of stopTheWorldGC.
func () {
startTheWorld()
semrelease(&gcsema)
}
// Holding worldsema grants an M the right to try to stop the world.
var worldsema uint32 = 1
// Holding gcsema grants the M the right to block a GC, and blocks
// until the current GC is done. In particular, it prevents gomaxprocs
// from changing concurrently.
//
// TODO(mknyszek): Once gomaxprocs and the execution tracer can handle
// being changed/enabled during a GC, remove this.
var gcsema uint32 = 1
// stopTheWorldWithSema is the core implementation of stopTheWorld.
// The caller is responsible for acquiring worldsema and disabling
// preemption first and then should stopTheWorldWithSema on the system
// stack:
//
// semacquire(&worldsema, 0)
// m.preemptoff = "reason"
// systemstack(stopTheWorldWithSema)
//
// When finished, the caller must either call startTheWorld or undo
// these three operations separately:
//
// m.preemptoff = ""
// systemstack(startTheWorldWithSema)
// semrelease(&worldsema)
//
// It is allowed to acquire worldsema once and then execute multiple
// startTheWorldWithSema/stopTheWorldWithSema pairs.
// Other P's are able to execute between successive calls to
// startTheWorldWithSema and stopTheWorldWithSema.
// Holding worldsema causes any other goroutines invoking
// stopTheWorld to block.
func () {
:= getg()
// If we hold a lock, then we won't be able to stop another M
// that is blocked trying to acquire the lock.
if .m.locks > 0 {
throw("stopTheWorld: holding locks")
}
lock(&sched.lock)
sched.stopwait = gomaxprocs
atomic.Store(&sched.gcwaiting, 1)
preemptall()
// stop current P
.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
sched.stopwait--
// try to retake all P's in Psyscall status
for , := range allp {
:= .status
if == _Psyscall && atomic.Cas(&.status, , _Pgcstop) {
if trace.enabled {
traceGoSysBlock()
traceProcStop()
}
.syscalltick++
sched.stopwait--
}
}
// stop idle P's
for {
:= pidleget()
if == nil {
break
}
.status = _Pgcstop
sched.stopwait--
}
:= sched.stopwait > 0
unlock(&sched.lock)
// wait for remaining P's to stop voluntarily
if {
for {
// wait for 100us, then try to re-preempt in case of any races
if notetsleep(&sched.stopnote, 100*1000) {
noteclear(&sched.stopnote)
break
}
preemptall()
}
}
// sanity checks
:= ""
if sched.stopwait != 0 {
= "stopTheWorld: not stopped (stopwait != 0)"
} else {
for , := range allp {
if .status != _Pgcstop {
= "stopTheWorld: not stopped (status != _Pgcstop)"
}
}
}
if atomic.Load(&freezing) != 0 {
// Some other thread is panicking. This can cause the
// sanity checks above to fail if the panic happens in
// the signal handler on a stopped thread. Either way,
// we should halt this thread.
lock(&deadlock)
lock(&deadlock)
}
if != "" {
throw()
}
worldStopped()
}
func ( bool) int64 {
assertWorldStopped()
:= acquirem() // disable preemption because it can be holding p in a local var
if netpollinited() {
:= netpoll(0) // non-blocking
injectglist(&)
}
lock(&sched.lock)
:= gomaxprocs
if newprocs != 0 {
= newprocs
newprocs = 0
}
:= procresize()
sched.gcwaiting = 0
if sched.sysmonwait != 0 {
sched.sysmonwait = 0
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
worldStarted()
for != nil {
:=
= .link.ptr()
if .m != 0 {
:= .m.ptr()
.m = 0
if .nextp != 0 {
throw("startTheWorld: inconsistent mp->nextp")
}
.nextp.set()
notewakeup(&.park)
} else {
// Start M to run P. Do not start another M below.
newm(nil, , -1)
}
}
// Capture start-the-world time before doing clean-up tasks.
:= nanotime()
if {
traceGCSTWDone()
}
// Wakeup an additional proc in case we have excessive runnable goroutines
// in local queues or in the global queue. If we don't, the proc will park itself.
// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
wakep()
releasem()
return
}
// usesLibcall indicates whether this runtime performs system calls
// via libcall.
func () bool {
switch GOOS {
case "aix", "darwin", "illumos", "ios", "solaris", "windows":
return true
case "openbsd":
return GOARCH == "amd64" || GOARCH == "arm64"
}
return false
}
// mStackIsSystemAllocated indicates whether this runtime starts on a
// system-allocated stack.
func () bool {
switch GOOS {
case "aix", "darwin", "plan9", "illumos", "ios", "solaris", "windows":
return true
case "openbsd":
switch GOARCH {
case "amd64", "arm64":
return true
}
}
return false
}
// mstart is the entry-point for new Ms.
//
// This must not split the stack because we may not even have stack
// bounds set up yet.
//
// May run during STW (because it doesn't have a P yet), so write
// barriers are not allowed.
//
//go:nosplit
//go:nowritebarrierrec
func () {
:= getg()
:= .stack.lo == 0
if {
// Initialize stack bounds from system stack.
// Cgo may have left stack size in stack.hi.
// minit may update the stack bounds.
//
// Note: these bounds may not be very accurate.
// We set hi to &size, but there are things above
// it. The 1024 is supposed to compensate this,
// but is somewhat arbitrary.
:= .stack.hi
if == 0 {
= 8192 * sys.StackGuardMultiplier
}
.stack.hi = uintptr(noescape(unsafe.Pointer(&)))
.stack.lo = .stack.hi - + 1024
}
// Initialize stack guard so that we can start calling regular
// Go code.
.stackguard0 = .stack.lo + _StackGuard
// This is the g0, so we can also call go:systemstack
// functions, which check stackguard1.
.stackguard1 = .stackguard0
mstart1()
// Exit this thread.
if mStackIsSystemAllocated() {
// Windows, Solaris, illumos, Darwin, AIX and Plan 9 always system-allocate
// the stack, but put it in _g_.stack before mstart,
// so the logic above hasn't set osStack yet.
= true
}
mexit()
}
func () {
:= getg()
if != .m.g0 {
throw("bad runtime·mstart")
}
// Record the caller for use as the top of stack in mcall and
// for terminating the thread.
// We're never coming back to mstart1 after we call schedule,
// so other calls can reuse the current frame.
save(getcallerpc(), getcallersp())
asminit()
minit()
// Install signal handlers; after minit so that minit can
// prepare the thread to be able to handle the signals.
if .m == &m0 {
mstartm0()
}
if := .m.mstartfn; != nil {
()
}
if .m != &m0 {
acquirep(.m.nextp.ptr())
.m.nextp = 0
}
schedule()
}
// mstartm0 implements part of mstart1 that only runs on the m0.
//
// Write barriers are allowed here because we know the GC can't be
// running yet, so they'll be no-ops.
//
//go:yeswritebarrierrec
func () {
// Create an extra M for callbacks on threads not created by Go.
// An extra M is also needed on Windows for callbacks created by
// syscall.NewCallback. See issue #6751 for details.
if (iscgo || GOOS == "windows") && !cgoHasExtraM {
cgoHasExtraM = true
newextram()
}
initsig(false)
}
// mPark causes a thread to park itself - temporarily waking for
// fixups but otherwise waiting to be fully woken. This is the
// only way that m's should park themselves.
//go:nosplit
func () {
:= getg()
for {
notesleep(&.m.park)
noteclear(&.m.park)
if !mDoFixup() {
return
}
}
}
// mexit tears down and exits the current thread.
//
// Don't call this directly to exit the thread, since it must run at
// the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to
// unwind the stack to the point that exits the thread.
//
// It is entered with m.p != nil, so write barriers are allowed. It
// will release the P before exiting.
//
//go:yeswritebarrierrec
func ( bool) {
:= getg()
:= .m
if == &m0 {
// This is the main thread. Just wedge it.
//
// On Linux, exiting the main thread puts the process
// into a non-waitable zombie state. On Plan 9,
// exiting the main thread unblocks wait even though
// other threads are still running. On Solaris we can
// neither exitThread nor return from mstart. Other
// bad things probably happen on other platforms.
//
// We could try to clean up this M more before wedging
// it, but that complicates signal handling.
handoffp(releasep())
lock(&sched.lock)
sched.nmfreed++
checkdead()
unlock(&sched.lock)
mPark()
throw("locked m0 woke up")
}
sigblock(true)
unminit()
// Free the gsignal stack.
if .gsignal != nil {
stackfree(.gsignal.stack)
// On some platforms, when calling into VDSO (e.g. nanotime)
// we store our g on the gsignal stack, if there is one.
// Now the stack is freed, unlink it from the m, so we
// won't write to it when calling VDSO code.
.gsignal = nil
}
// Remove m from allm.
lock(&sched.lock)
for := &allm; * != nil; = &(*).alllink {
if * == {
* = .alllink
goto
}
}
throw("m not found in allm")
:
if ! {
// Delay reaping m until it's done with the stack.
//
// If this is using an OS stack, the OS will free it
// so there's no need for reaping.
atomic.Store(&.freeWait, 1)
// Put m on the free list, though it will not be reaped until
// freeWait is 0. Note that the free list must not be linked
// through alllink because some functions walk allm without
// locking, so may be using alllink.
.freelink = sched.freem
sched.freem =
}
unlock(&sched.lock)
// Release the P.
handoffp(releasep())
// After this point we must not have write barriers.
// Invoke the deadlock detector. This must happen after
// handoffp because it may have started a new M to take our
// P's work.
lock(&sched.lock)
sched.nmfreed++
checkdead()
unlock(&sched.lock)
if GOOS == "darwin" || GOOS == "ios" {
// Make sure pendingPreemptSignals is correct when an M exits.
// For #41702.
if atomic.Load(&.signalPending) != 0 {
atomic.Xadd(&pendingPreemptSignals, -1)
}
}
// Destroy all allocated resources. After this is called, we may no
// longer take any locks.
mdestroy()
if {
// Return from mstart and let the system thread
// library free the g0 stack and terminate the thread.
return
}
// mstart is the thread's entry point, so there's nothing to
// return to. Exit the thread directly. exitThread will clear
// m.freeWait when it's done with the stack and the m can be
// reaped.
exitThread(&.freeWait)
}
// forEachP calls fn(p) for every P p when p reaches a GC safe point.
// If a P is currently executing code, this will bring the P to a GC
// safe point and execute fn on that P. If the P is not executing code
// (it is idle or in a syscall), this will call fn(p) directly while
// preventing the P from exiting its state. This does not ensure that
// fn will run on every CPU executing Go code, but it acts as a global
// memory barrier. GC uses this as a "ragged barrier."
//
// The caller must hold worldsema.
//
//go:systemstack
func ( func(*p)) {
:= acquirem()
:= getg().m.p.ptr()
lock(&sched.lock)
if sched.safePointWait != 0 {
throw("forEachP: sched.safePointWait != 0")
}
sched.safePointWait = gomaxprocs - 1
sched.safePointFn =
// Ask all Ps to run the safe point function.
for , := range allp {
if != {
atomic.Store(&.runSafePointFn, 1)
}
}
preemptall()
// Any P entering _Pidle or _Psyscall from now on will observe
// p.runSafePointFn == 1 and will call runSafePointFn when
// changing its status to _Pidle/_Psyscall.
// Run safe point function for all idle Ps. sched.pidle will
// not change because we hold sched.lock.
for := sched.pidle.ptr(); != nil; = .link.ptr() {
if atomic.Cas(&.runSafePointFn, 1, 0) {
()
sched.safePointWait--
}
}
:= sched.safePointWait > 0
unlock(&sched.lock)
// Run fn for the current P.
()
// Force Ps currently in _Psyscall into _Pidle and hand them
// off to induce safe point function execution.
for , := range allp {
:= .status
if == _Psyscall && .runSafePointFn == 1 && atomic.Cas(&.status, , _Pidle) {
if trace.enabled {
traceGoSysBlock()
traceProcStop()
}
.syscalltick++
handoffp()
}
}
// Wait for remaining Ps to run fn.
if {
for {
// Wait for 100us, then try to re-preempt in
// case of any races.
//
// Requires system stack.
if notetsleep(&sched.safePointNote, 100*1000) {
noteclear(&sched.safePointNote)
break
}
preemptall()
}
}
if sched.safePointWait != 0 {
throw("forEachP: not done")
}
for , := range allp {
if .runSafePointFn != 0 {
throw("forEachP: P did not run fn")
}
}
lock(&sched.lock)
sched.safePointFn = nil
unlock(&sched.lock)
releasem()
}
// syscall_runtime_doAllThreadsSyscall serializes Go execution and
// executes a specified fn() call on all m's.
//
// The boolean argument to fn() indicates whether the function's
// return value will be consulted or not. That is, fn(true) should
// return true if fn() succeeds, and fn(true) should return false if
// it failed. When fn(false) is called, its return status will be
// ignored.
//
// syscall_runtime_doAllThreadsSyscall first invokes fn(true) on a
// single, coordinating, m, and only if it returns true does it go on
// to invoke fn(false) on all of the other m's known to the process.
//
//go:linkname syscall_runtime_doAllThreadsSyscall syscall.runtime_doAllThreadsSyscall
func ( func(bool) bool) {
if iscgo {
panic("doAllThreadsSyscall not supported with cgo enabled")
}
if == nil {
return
}
for atomic.Load(&sched.sysmonStarting) != 0 {
osyield()
}
stopTheWorldGC("doAllThreadsSyscall")
if atomic.Load(&newmHandoff.haveTemplateThread) != 0 {
// Ensure that there are no in-flight thread
// creations: don't want to race with allm.
lock(&newmHandoff.lock)
for !newmHandoff.waiting {
unlock(&newmHandoff.lock)
osyield()
lock(&newmHandoff.lock)
}
unlock(&newmHandoff.lock)
}
if netpollinited() {
netpollBreak()
}
sigRecvPrepareForFixup()
:= getg()
if raceenabled {
// For m's running without racectx, we loan out the
// racectx of this call.
lock(&mFixupRace.lock)
mFixupRace.ctx = .racectx
unlock(&mFixupRace.lock)
}
if := (true); {
:= .m.procid
for := allm; != nil; = .alllink {
if .procid == {
// This m has already completed fn()
// call.
continue
}
// Be wary of mp's without procid values if
// they are known not to park. If they are
// marked as parking with a zero procid, then
// they will be racing with this code to be
// allocated a procid and we will annotate
// them with the need to execute the fn when
// they acquire a procid to run it.
if .procid == 0 && !.doesPark {
// Reaching here, we are either
// running Windows, or cgo linked
// code. Neither of which are
// currently supported by this API.
throw("unsupported runtime environment")
}
// stopTheWorldGC() doesn't guarantee stopping
// all the threads, so we lock here to avoid
// the possibility of racing with mp.
lock(&.mFixup.lock)
.mFixup.fn =
if .doesPark {
// For non-service threads this will
// cause the wakeup to be short lived
// (once the mutex is unlocked). The
// next real wakeup will occur after
// startTheWorldGC() is called.
notewakeup(&.park)
}
unlock(&.mFixup.lock)
}
for {
:= true
for := allm; && != nil; = .alllink {
if .procid == {
continue
}
lock(&.mFixup.lock)
= && (.mFixup.fn == nil)
unlock(&.mFixup.lock)
}
if {
break
}
// if needed force sysmon and/or newmHandoff to wakeup.
lock(&sched.lock)
if atomic.Load(&sched.sysmonwait) != 0 {
atomic.Store(&sched.sysmonwait, 0)
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
lock(&newmHandoff.lock)
if newmHandoff.waiting {
newmHandoff.waiting = false
notewakeup(&newmHandoff.wake)
}
unlock(&newmHandoff.lock)
osyield()
}
}
if raceenabled {
lock(&mFixupRace.lock)
mFixupRace.ctx = 0
unlock(&mFixupRace.lock)
}
startTheWorldGC()
}
// runSafePointFn runs the safe point function, if any, for this P.
// This should be called like
//
// if getg().m.p.runSafePointFn != 0 {
// runSafePointFn()
// }
//
// runSafePointFn must be checked on any transition in to _Pidle or
// _Psyscall to avoid a race where forEachP sees that the P is running
// just before the P goes into _Pidle/_Psyscall and neither forEachP
// nor the P run the safe-point function.
func () {
:= getg().m.p.ptr()
// Resolve the race between forEachP running the safe-point
// function on this P's behalf and this P running the
// safe-point function directly.
if !atomic.Cas(&.runSafePointFn, 1, 0) {
return
}
sched.safePointFn()
lock(&sched.lock)
sched.safePointWait--
if sched.safePointWait == 0 {
notewakeup(&sched.safePointNote)
}
unlock(&sched.lock)
}
// When running with cgo, we call _cgo_thread_start
// to start threads for us so that we can play nicely with
// foreign code.
var cgoThreadStart unsafe.Pointer
type cgothreadstart struct {
g guintptr
tls *uint64
fn unsafe.Pointer
}
// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
// fn is recorded as the new m's m.mstartfn.
// id is optional pre-allocated m ID. Omit by passing -1.
//
// This function is allowed to have write barriers even if the caller
// isn't because it borrows _p_.
//
//go:yeswritebarrierrec
func ( *p, func(), int64) *m {
:= getg()
acquirem() // disable GC because it can be called from sysmon
if .m.p == 0 {
acquirep() // temporarily borrow p for mallocs in this function
}
// Release the free M list. We need to do this somewhere and
// this may free up a stack we can use.
if sched.freem != nil {
lock(&sched.lock)
var *m
for := sched.freem; != nil; {
if .freeWait != 0 {
:= .freelink
.freelink =
=
=
continue
}
// stackfree must be on the system stack, but allocm is
// reachable off the system stack transitively from
// startm.
systemstack(func() {
stackfree(.g0.stack)
})
= .freelink
}
sched.freem =
unlock(&sched.lock)
}
:= new(m)
.mstartfn =
mcommoninit(, )
// In case of cgo or Solaris or illumos or Darwin, pthread_create will make us a stack.
// Windows and Plan 9 will layout sched stack on OS stack.
if iscgo || mStackIsSystemAllocated() {
.g0 = malg(-1)
} else {
.g0 = malg(8192 * sys.StackGuardMultiplier)
}
.g0.m =
if == .m.p.ptr() {
releasep()
}
releasem(.m)
return
}
// needm is called when a cgo callback happens on a
// thread without an m (a thread not created by Go).
// In this case, needm is expected to find an m to use
// and return with m, g initialized correctly.
// Since m and g are not set now (likely nil, but see below)
// needm is limited in what routines it can call. In particular
// it can only call nosplit functions (textflag 7) and cannot
// do any scheduling that requires an m.
//
// In order to avoid needing heavy lifting here, we adopt
// the following strategy: there is a stack of available m's
// that can be stolen. Using compare-and-swap
// to pop from the stack has ABA races, so we simulate
// a lock by doing an exchange (via Casuintptr) to steal the stack
// head and replace the top pointer with MLOCKED (1).
// This serves as a simple spin lock that we can use even
// without an m. The thread that locks the stack in this way
// unlocks the stack by storing a valid stack head pointer.
//
// In order to make sure that there is always an m structure
// available to be stolen, we maintain the invariant that there
// is always one more than needed. At the beginning of the
// program (if cgo is in use) the list is seeded with a single m.
// If needm finds that it has taken the last m off the list, its job
// is - once it has installed its own m so that it can do things like
// allocate memory - to create a spare m and put it on the list.
//
// Each of these extra m's also has a g0 and a curg that are
// pressed into service as the scheduling stack and current
// goroutine for the duration of the cgo callback.
//
// When the callback is done with the m, it calls dropm to
// put the m back on the list.
//go:nosplit
func () {
if (iscgo || GOOS == "windows") && !cgoHasExtraM {
// Can happen if C/C++ code calls Go from a global ctor.
// Can also happen on Windows if a global ctor uses a
// callback created by syscall.NewCallback. See issue #6751
// for details.
//
// Can not throw, because scheduler is not initialized yet.
write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
exit(1)
}
// Save and block signals before getting an M.
// The signal handler may call needm itself,
// and we must avoid a deadlock. Also, once g is installed,
// any incoming signals will try to execute,
// but we won't have the sigaltstack settings and other data
// set up appropriately until the end of minit, which will
// unblock the signals. This is the same dance as when
// starting a new m to run Go code via newosproc.
var sigset
sigsave(&)
sigblock(false)
// Lock extra list, take head, unlock popped list.
// nilokay=false is safe here because of the invariant above,
// that the extra list always contains or will soon contain
// at least one m.
:= lockextra(false)
// Set needextram when we've just emptied the list,
// so that the eventual call into cgocallbackg will
// allocate a new m for the extra list. We delay the
// allocation until then so that it can be done
// after exitsyscall makes sure it is okay to be
// running at all (that is, there's no garbage collection
// running right now).
.needextram = .schedlink == 0
extraMCount--
unlockextra(.schedlink.ptr())
// Store the original signal mask for use by minit.
.sigmask =
// Install g (= m->g0) and set the stack bounds
// to match the current stack. We don't actually know
// how big the stack is, like we don't know how big any
// scheduling stack is, but we assume there's at least 32 kB,
// which is more than enough for us.
setg(.g0)
:= getg()
.stack.hi = getcallersp() + 1024
.stack.lo = getcallersp() - 32*1024
.stackguard0 = .stack.lo + _StackGuard
// Initialize this thread to use the m.
asminit()
minit()
// mp.curg is now a real goroutine.
casgstatus(.curg, _Gdead, _Gsyscall)
atomic.Xadd(&sched.ngsys, -1)
}
var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
// newextram allocates m's and puts them on the extra list.
// It is called with a working local m, so that it can do things
// like call schedlock and allocate.
func () {
:= atomic.Xchg(&extraMWaiters, 0)
if > 0 {
for := uint32(0); < ; ++ {
oneNewExtraM()
}
} else {
// Make sure there is at least one extra M.
:= lockextra(true)
unlockextra()
if == nil {
oneNewExtraM()
}
}
}
// oneNewExtraM allocates an m and puts it on the extra list.
func () {
// Create extra goroutine locked to extra m.
// The goroutine is the context in which the cgo callback will run.
// The sched.pc will never be returned to, but setting it to
// goexit makes clear to the traceback routines where
// the goroutine stack ends.
:= allocm(nil, nil, -1)
:= malg(4096)
.sched.pc = funcPC(goexit) + sys.PCQuantum
.sched.sp = .stack.hi
.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame
.sched.lr = 0
.sched.g = guintptr(unsafe.Pointer())
.syscallpc = .sched.pc
.syscallsp = .sched.sp
.stktopsp = .sched.sp
// malg returns status as _Gidle. Change to _Gdead before
// adding to allg where GC can see it. We use _Gdead to hide
// this from tracebacks and stack scans since it isn't a
// "real" goroutine until needm grabs it.
casgstatus(, _Gidle, _Gdead)
.m =
.curg =
.lockedInt++
.lockedg.set()
.lockedm.set()
.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
if raceenabled {
.racectx = racegostart(funcPC(newextram) + sys.PCQuantum)
}
// put on allg for garbage collector
allgadd()
// gp is now on the allg list, but we don't want it to be
// counted by gcount. It would be more "proper" to increment
// sched.ngfree, but that requires locking. Incrementing ngsys
// has the same effect.
atomic.Xadd(&sched.ngsys, +1)
// Add m to the extra list.
:= lockextra(true)
.schedlink.set()
extraMCount++
unlockextra()
}
// dropm is called when a cgo callback has called needm but is now
// done with the callback and returning back into the non-Go thread.
// It puts the current m back onto the extra list.
//
// The main expense here is the call to signalstack to release the
// m's signal stack, and then the call to needm on the next callback
// from this thread. It is tempting to try to save the m for next time,
// which would eliminate both these costs, but there might not be
// a next time: the current thread (which Go does not control) might exit.
// If we saved the m for that thread, there would be an m leak each time
// such a thread exited. Instead, we acquire and release an m on each
// call. These should typically not be scheduling operations, just a few
// atomics, so the cost should be small.
//
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
// variable using pthread_key_create. Unlike the pthread keys we already use
// on OS X, this dummy key would never be read by Go code. It would exist
// only so that we could register at thread-exit-time destructor.
// That destructor would put the m back onto the extra list.
// This is purely a performance optimization. The current version,
// in which dropm happens on each cgo call, is still correct too.
// We may have to keep the current version on systems with cgo
// but without pthreads, like Windows.
func () {
// Clear m and g, and return m to the extra list.
// After the call to setg we can only call nosplit functions
// with no pointer manipulation.
:= getg().m
// Return mp.curg to dead state.
casgstatus(.curg, _Gsyscall, _Gdead)
.curg.preemptStop = false
atomic.Xadd(&sched.ngsys, +1)
// Block signals before unminit.
// Unminit unregisters the signal handling stack (but needs g on some systems).
// Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
// It's important not to try to handle a signal between those two steps.
:= .sigmask
sigblock(false)
unminit()
:= lockextra(true)
extraMCount++
.schedlink.set()
setg(nil)
// Commit the release of mp.
unlockextra()
msigrestore()
}
// A helper function for EnsureDropM.
func () uintptr {
return uintptr(unsafe.Pointer(getg().m))
}
var extram uintptr
var extraMCount uint32 // Protected by lockextra
var extraMWaiters uint32
// lockextra locks the extra list and returns the list head.
// The caller must unlock the list by storing a new list head
// to extram. If nilokay is true, then lockextra will
// return a nil list head if that's what it finds. If nilokay is false,
// lockextra will keep waiting until the list head is no longer nil.
//go:nosplit
func ( bool) *m {
const = 1
:= false
for {
:= atomic.Loaduintptr(&extram)
if == {
osyield()
continue
}
if == 0 && ! {
if ! {
// Add 1 to the number of threads
// waiting for an M.
// This is cleared by newextram.
atomic.Xadd(&extraMWaiters, 1)
= true
}
usleep(1)
continue
}
if atomic.Casuintptr(&extram, , ) {
return (*m)(unsafe.Pointer())
}
osyield()
continue
}
}
//go:nosplit
func ( *m) {
atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer()))
}
// execLock serializes exec and clone to avoid bugs or unspecified behaviour
// around exec'ing while creating/destroying threads. See issue #19546.
var execLock rwmutex
// newmHandoff contains a list of m structures that need new OS threads.
// This is used by newm in situations where newm itself can't safely
// start an OS thread.
var newmHandoff struct {
lock mutex
// newm points to a list of M structures that need new OS
// threads. The list is linked through m.schedlink.
newm muintptr
// waiting indicates that wake needs to be notified when an m
// is put on the list.
waiting bool
wake note
// haveTemplateThread indicates that the templateThread has
// been started. This is not protected by lock. Use cas to set
// to 1.
haveTemplateThread uint32
}
// Create a new m. It will start off with a call to fn, or else the scheduler.
// fn needs to be static and not a heap allocated closure.
// May run with m.p==nil, so write barriers are not allowed.
//
// id is optional pre-allocated m ID. Omit by passing -1.
//go:nowritebarrierrec
func ( func(), *p, int64) {
:= allocm(, , )
.doesPark = ( != nil)
.nextp.set()
.sigmask = initSigmask
if := getg(); != nil && .m != nil && (.m.lockedExt != 0 || .m.incgo) && GOOS != "plan9" {
// We're on a locked M or a thread that may have been
// started by C. The kernel state of this thread may
// be strange (the user may have locked it for that
// purpose). We don't want to clone that into another
// thread. Instead, ask a known-good thread to create
// the thread for us.
//
// This is disabled on Plan 9. See golang.org/issue/22227.
//
// TODO: This may be unnecessary on Windows, which
// doesn't model thread creation off fork.
lock(&newmHandoff.lock)
if newmHandoff.haveTemplateThread == 0 {
throw("on a locked thread with no template thread")
}
.schedlink = newmHandoff.newm
newmHandoff.newm.set()
if newmHandoff.waiting {
newmHandoff.waiting = false
notewakeup(&newmHandoff.wake)
}
unlock(&newmHandoff.lock)
return
}
newm1()
}
func ( *m) {
if iscgo {
var cgothreadstart
if _cgo_thread_start == nil {
throw("_cgo_thread_start missing")
}
.g.set(.g0)
.tls = (*uint64)(unsafe.Pointer(&.tls[0]))
.fn = unsafe.Pointer(funcPC(mstart))
if msanenabled {
msanwrite(unsafe.Pointer(&), unsafe.Sizeof())
}
execLock.rlock() // Prevent process clone.
asmcgocall(_cgo_thread_start, unsafe.Pointer(&))
execLock.runlock()
return
}
execLock.rlock() // Prevent process clone.
newosproc()
execLock.runlock()
}
// startTemplateThread starts the template thread if it is not already
// running.
//
// The calling thread must itself be in a known-good state.
func () {
if GOARCH == "wasm" { // no threads on wasm yet
return
}
// Disable preemption to guarantee that the template thread will be
// created before a park once haveTemplateThread is set.
:= acquirem()
if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) {
releasem()
return
}
newm(templateThread, nil, -1)
releasem()
}
// mFixupRace is used to temporarily borrow the race context from the
// coordinating m during a syscall_runtime_doAllThreadsSyscall and
// loan it out to each of the m's of the runtime so they can execute a
// mFixup.fn in that context.
var mFixupRace struct {
lock mutex
ctx uintptr
}
// mDoFixup runs any outstanding fixup function for the running m.
// Returns true if a fixup was outstanding and actually executed.
//
//go:nosplit
func () bool {
:= getg()
lock(&.m.mFixup.lock)
:= .m.mFixup.fn
if != nil {
if gcphase != _GCoff {
// We can't have a write barrier in this
// context since we may not have a P, but we
// clear fn to signal that we've executed the
// fixup. As long as fn is kept alive
// elsewhere, technically we should have no
// issues with the GC, but fn is likely
// generated in a different package altogether
// that may change independently. Just assert
// the GC is off so this lack of write barrier
// is more obviously safe.
throw("GC must be disabled to protect validity of fn value")
}
*(*uintptr)(unsafe.Pointer(&.m.mFixup.fn)) = 0
if .racectx != 0 || !raceenabled {
(false)
} else {
// temporarily acquire the context of the
// originator of the
// syscall_runtime_doAllThreadsSyscall and
// block others from using it for the duration
// of the fixup call.
lock(&mFixupRace.lock)
.racectx = mFixupRace.ctx
(false)
.racectx = 0
unlock(&mFixupRace.lock)
}
}
unlock(&.m.mFixup.lock)
return != nil
}
// templateThread is a thread in a known-good state that exists solely
// to start new threads in known-good states when the calling thread
// may not be in a good state.
//
// Many programs never need this, so templateThread is started lazily
// when we first enter a state that might lead to running on a thread
// in an unknown state.
//
// templateThread runs on an M without a P, so it must not have write
// barriers.
//
//go:nowritebarrierrec
func () {
lock(&sched.lock)
sched.nmsys++
checkdead()
unlock(&sched.lock)
for {
lock(&newmHandoff.lock)
for newmHandoff.newm != 0 {
:= newmHandoff.newm.ptr()
newmHandoff.newm = 0
unlock(&newmHandoff.lock)
for != nil {
:= .schedlink.ptr()
.schedlink = 0
newm1()
=
}
lock(&newmHandoff.lock)
}
newmHandoff.waiting = true
noteclear(&newmHandoff.wake)
unlock(&newmHandoff.lock)
notesleep(&newmHandoff.wake)
mDoFixup()
}
}
// Stops execution of the current m until new work is available.
// Returns with acquired P.
func () {
:= getg()
if .m.locks != 0 {
throw("stopm holding locks")
}
if .m.p != 0 {
throw("stopm holding p")
}
if .m.spinning {
throw("stopm spinning")
}
lock(&sched.lock)
mput(.m)
unlock(&sched.lock)
mPark()
acquirep(.m.nextp.ptr())
.m.nextp = 0
}
func () {
// startm's caller incremented nmspinning. Set the new M's spinning.
getg().m.spinning = true
}
// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's does nothing.
// May run with m.p==nil, so write barriers are not allowed.
// If spinning is set, the caller has incremented nmspinning and startm will
// either decrement nmspinning or set m.spinning in the newly started M.
//
// Callers passing a non-nil P must call from a non-preemptible context. See
// comment on acquirem below.
//
// Must not have write barriers because this may be called without a P.
//go:nowritebarrierrec
func ( *p, bool) {
// Disable preemption.
//
// Every owned P must have an owner that will eventually stop it in the
// event of a GC stop request. startm takes transient ownership of a P
// (either from argument or pidleget below) and transfers ownership to
// a started M, which will be responsible for performing the stop.
//
// Preemption must be disabled during this transient ownership,
// otherwise the P this is running on may enter GC stop while still
// holding the transient P, leaving that P in limbo and deadlocking the
// STW.
//
// Callers passing a non-nil P must already be in non-preemptible
// context, otherwise such preemption could occur on function entry to
// startm. Callers passing a nil P may be preemptible, so we must
// disable preemption before acquiring a P from pidleget below.
:= acquirem()
lock(&sched.lock)
if == nil {
= pidleget()
if == nil {
unlock(&sched.lock)
if {
// The caller incremented nmspinning, but there are no idle Ps,
// so it's okay to just undo the increment and give up.
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("startm: negative nmspinning")
}
}
releasem()
return
}
}
:= mget()
if == nil {
// No M is available, we must drop sched.lock and call newm.
// However, we already own a P to assign to the M.
//
// Once sched.lock is released, another G (e.g., in a syscall),
// could find no idle P while checkdead finds a runnable G but
// no running M's because this new M hasn't started yet, thus
// throwing in an apparent deadlock.
//
// Avoid this situation by pre-allocating the ID for the new M,
// thus marking it as 'running' before we drop sched.lock. This
// new M will eventually run the scheduler to execute any
// queued G's.
:= mReserveID()
unlock(&sched.lock)
var func()
if {
// The caller incremented nmspinning, so set m.spinning in the new M.
= mspinning
}
newm(, , )
// Ownership transfer of _p_ committed by start in newm.
// Preemption is now safe.
releasem()
return
}
unlock(&sched.lock)
if .spinning {
throw("startm: m is spinning")
}
if .nextp != 0 {
throw("startm: m has p")
}
if && !runqempty() {
throw("startm: p has runnable gs")
}
// The caller incremented nmspinning, so set m.spinning in the new M.
.spinning =
.nextp.set()
notewakeup(&.park)
// Ownership transfer of _p_ committed by wakeup. Preemption is now
// safe.
releasem()
}
// Hands off P from syscall or locked M.
// Always runs without a P, so write barriers are not allowed.
//go:nowritebarrierrec
func ( *p) {
// handoffp must start an M in any situation where
// findrunnable would return a G to run on _p_.
// if it has local work, start it straight away
if !runqempty() || sched.runqsize != 0 {
startm(, false)
return
}
// if it has GC work, start it straight away
if gcBlackenEnabled != 0 && gcMarkWorkAvailable() {
startm(, false)
return
}
// no local work, check that there are no spinning/idle M's,
// otherwise our help is not required
if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
startm(, true)
return
}
lock(&sched.lock)
if sched.gcwaiting != 0 {
.status = _Pgcstop
sched.stopwait--
if sched.stopwait == 0 {
notewakeup(&sched.stopnote)
}
unlock(&sched.lock)
return
}
if .runSafePointFn != 0 && atomic.Cas(&.runSafePointFn, 1, 0) {
sched.safePointFn()
sched.safePointWait--
if sched.safePointWait == 0 {
notewakeup(&sched.safePointNote)
}
}
if sched.runqsize != 0 {
unlock(&sched.lock)
startm(, false)
return
}
// If this is the last running P and nobody is polling network,
// need to wakeup another M to poll network.
if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
unlock(&sched.lock)
startm(, false)
return
}
// The scheduler lock cannot be held when calling wakeNetPoller below
// because wakeNetPoller may call wakep which may call startm.
:= nobarrierWakeTime()
pidleput()
unlock(&sched.lock)
if != 0 {
wakeNetPoller()
}
}
// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
func () {
if atomic.Load(&sched.npidle) == 0 {
return
}
// be conservative about spinning threads
if atomic.Load(&sched.nmspinning) != 0 || !atomic.Cas(&sched.nmspinning, 0, 1) {
return
}
startm(nil, true)
}
// Stops execution of the current m that is locked to a g until the g is runnable again.
// Returns with acquired P.
func () {
:= getg()
if .m.lockedg == 0 || .m.lockedg.ptr().lockedm.ptr() != .m {
throw("stoplockedm: inconsistent locking")
}
if .m.p != 0 {
// Schedule another M to run this p.
:= releasep()
handoffp()
}
incidlelocked(1)
// Wait until another thread schedules lockedg again.
mPark()
:= readgstatus(.m.lockedg.ptr())
if &^_Gscan != _Grunnable {
print("runtime:stoplockedm: lockedg (atomicstatus=", , ") is not Grunnable or Gscanrunnable\n")
dumpgstatus(.m.lockedg.ptr())
throw("stoplockedm: not runnable")
}
acquirep(.m.nextp.ptr())
.m.nextp = 0
}
// Schedules the locked m to run the locked gp.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func ( *g) {
:= getg()
:= .lockedm.ptr()
if == .m {
throw("startlockedm: locked to me")
}
if .nextp != 0 {
throw("startlockedm: m has p")
}
// directly handoff current P to the locked m
incidlelocked(-1)
:= releasep()
.nextp.set()
notewakeup(&.park)
stopm()
}
// Stops the current m for stopTheWorld.
// Returns when the world is restarted.
func () {
:= getg()
if sched.gcwaiting == 0 {
throw("gcstopm: not waiting for gc")
}
if .m.spinning {
.m.spinning = false
// OK to just drop nmspinning here,
// startTheWorld will unpark threads as necessary.
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("gcstopm: negative nmspinning")
}
}
:= releasep()
lock(&sched.lock)
.status = _Pgcstop
sched.stopwait--
if sched.stopwait == 0 {
notewakeup(&sched.stopnote)
}
unlock(&sched.lock)
stopm()
}
// Schedules gp to run on the current M.
// If inheritTime is true, gp inherits the remaining time in the
// current time slice. Otherwise, it starts a new time slice.
// Never returns.
//
// Write barriers are allowed because this is called immediately after
// acquiring a P in several places.
//
//go:yeswritebarrierrec
func ( *g, bool) {
:= getg()
// Assign gp.m before entering _Grunning so running Gs have an
// M.
.m.curg =
.m = .m
casgstatus(, _Grunnable, _Grunning)
.waitsince = 0
.preempt = false
.stackguard0 = .stack.lo + _StackGuard
if ! {
.m.p.ptr().schedtick++
}
// Check whether the profiler needs to be turned on or off.
:= sched.profilehz
if .m.profilehz != {
setThreadCPUProfiler()
}
if trace.enabled {
// GoSysExit has to happen when we have a P, but before GoStart.
// So we emit it here.
if .syscallsp != 0 && .sysblocktraced {
traceGoSysExit(.sysexitticks)
}
traceGoStart()
}
gogo(&.sched)
}
// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from local or global queue, poll network.
func () ( *g, bool) {
:= getg()
// The conditions here and in handoffp must agree: if
// findrunnable would return a G to run, handoffp must start
// an M.
:
:= .m.p.ptr()
if sched.gcwaiting != 0 {
gcstopm()
goto
}
if .runSafePointFn != 0 {
runSafePointFn()
}
, , := checkTimers(, 0)
if fingwait && fingwake {
if := wakefing(); != nil {
ready(, 0, true)
}
}
if *cgo_yield != nil {
asmcgocall(*cgo_yield, nil)
}
// local runq
if , := runqget(); != nil {
return ,
}
// global runq
if sched.runqsize != 0 {
lock(&sched.lock)
:= globrunqget(, 0)
unlock(&sched.lock)
if != nil {
return , false
}
}
// Poll network.
// This netpoll is only an optimization before we resort to stealing.
// We can safely skip it if there are no waiters or a thread is blocked
// in netpoll already. If there is any kind of logical race with that
// blocked thread (e.g. it has already returned from netpoll, but does
// not set lastpoll yet), this thread will do blocking netpoll below
// anyway.
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
if := netpoll(0); !.empty() { // non-blocking
:= .pop()
injectglist(&)
casgstatus(, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(, 0)
}
return , false
}
}
// Steal work from other P's.
:= uint32(gomaxprocs)
:= false
// If number of spinning M's >= number of busy P's, block.
// This is necessary to prevent excessive CPU consumption
// when GOMAXPROCS>>1 but the program parallelism is low.
if !.m.spinning && 2*atomic.Load(&sched.nmspinning) >= -atomic.Load(&sched.npidle) {
goto
}
if !.m.spinning {
.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
const = 4
for := 0; < ; ++ {
:= == -1
for := stealOrder.start(fastrand()); !.done(); .next() {
if sched.gcwaiting != 0 {
goto
}
:= allp[.position()]
if == {
continue
}
// Steal timers from p2. This call to checkTimers is the only place
// where we might hold a lock on a different P's timers. We do this
// once on the last pass before checking runnext because stealing
// from the other P's runnext should be the last resort, so if there
// are timers to steal do that first.
//
// We only check timers on one of the stealing iterations because
// the time stored in now doesn't change in this loop and checking
// the timers for each P more than once with the same value of now
// is probably a waste of time.
//
// timerpMask tells us whether the P may have timers at all. If it
// can't, no need to check at all.
if && timerpMask.read(.position()) {
, , := checkTimers(, )
=
if != 0 && ( == 0 || < ) {
=
}
if {
// Running the timers may have
// made an arbitrary number of G's
// ready and added them to this P's
// local run queue. That invalidates
// the assumption of runqsteal
// that is always has room to add
// stolen G's. So check now if there
// is a local G to run.
if , := runqget(); != nil {
return ,
}
= true
}
}
// Don't bother to attempt to steal if p2 is idle.
if !idlepMask.read(.position()) {
if := runqsteal(, , ); != nil {
return , false
}
}
}
}
if {
// Running a timer may have made some goroutine ready.
goto
}
:
// We have nothing to do. If we're in the GC mark phase, can
// safely scan and blacken objects, and have work to do, run
// idle-time marking rather than give up the P.
if gcBlackenEnabled != 0 && gcMarkWorkAvailable() {
:= (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop())
if != nil {
.gcMarkWorkerMode = gcMarkWorkerIdleMode
:= .gp.ptr()
casgstatus(, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(, 0)
}
return , false
}
}
:= int64(-1)
if != 0 {
// checkTimers ensures that polluntil > now.
= -
}
// wasm only:
// If a callback returned and no other goroutine is awake,
// then wake event handler goroutine which pauses execution
// until a callback was triggered.
, := beforeIdle()
if != nil {
casgstatus(, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(, 0)
}
return , false
}
if {
goto
}
// Before we drop our P, make a snapshot of the allp slice,
// which can change underfoot once we no longer block
// safe-points. We don't need to snapshot the contents because
// everything up to cap(allp) is immutable.
:= allp
// Also snapshot masks. Value changes are OK, but we can't allow
// len to change out from under us.
:= idlepMask
:= timerpMask
// return P and block
lock(&sched.lock)
if sched.gcwaiting != 0 || .runSafePointFn != 0 {
unlock(&sched.lock)
goto
}
if sched.runqsize != 0 {
:= globrunqget(, 0)
unlock(&sched.lock)
return , false
}
if releasep() != {
throw("findrunnable: wrong p")
}
pidleput()
unlock(&sched.lock)
// Delicate dance: thread transitions from spinning to non-spinning state,
// potentially concurrently with submission of new goroutines. We must
// drop nmspinning first and then check all per-P queues again (with
// #StoreLoad memory barrier in between). If we do it the other way around,
// another thread can submit a goroutine after we've checked all run queues
// but before we drop nmspinning; as a result nobody will unpark a thread
// to run the goroutine.
// If we discover new work below, we need to restore m.spinning as a signal
// for resetspinning to unpark a new worker thread (because there can be more
// than one starving goroutine). However, if after discovering new work
// we also observe no idle Ps, it is OK to just park the current thread:
// the system is fully loaded so no spinning threads are required.
// Also see "Worker thread parking/unparking" comment at the top of the file.
:= .m.spinning
if .m.spinning {
.m.spinning = false
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("findrunnable: negative nmspinning")
}
}
// check all runqueues once again
for , := range {
if !.read(uint32()) && !runqempty() {
lock(&sched.lock)
= pidleget()
unlock(&sched.lock)
if != nil {
acquirep()
if {
.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
goto
}
break
}
}
// Similar to above, check for timer creation or expiry concurrently with
// transitioning from spinning to non-spinning. Note that we cannot use
// checkTimers here because it calls adjusttimers which may need to allocate
// memory, and that isn't allowed when we don't have an active P.
for , := range {
if .read(uint32()) {
:= nobarrierWakeTime()
if != 0 && ( == 0 || < ) {
=
}
}
}
if != 0 {
if == 0 {
= nanotime()
}
= -
if < 0 {
= 0
}
}
// Check for idle-priority GC work again.
//
// N.B. Since we have no P, gcBlackenEnabled may change at any time; we
// must check again after acquiring a P.
if atomic.Load(&gcBlackenEnabled) != 0 && gcMarkWorkAvailable(nil) {
// Work is available; we can start an idle GC worker only if
// there is an available P and available worker G.
//
// We can attempt to acquire these in either order. Workers are
// almost always available (see comment in findRunnableGCWorker
// for the one case there may be none). Since we're slightly
// less likely to find a P, check for that first.
lock(&sched.lock)
var *gcBgMarkWorkerNode
= pidleget()
if != nil {
// Now that we own a P, gcBlackenEnabled can't change
// (as it requires STW).
if gcBlackenEnabled != 0 {
= (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop())
if == nil {
pidleput()
= nil
}
} else {
pidleput()
= nil
}
}
unlock(&sched.lock)
if != nil {
acquirep()
if {
.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
// Run the idle worker.
.gcMarkWorkerMode = gcMarkWorkerIdleMode
:= .gp.ptr()
casgstatus(, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(, 0)
}
return , false
}
}
// poll network
if netpollinited() && (atomic.Load(&netpollWaiters) > 0 || != 0) && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
atomic.Store64(&sched.pollUntil, uint64())
if .m.p != 0 {
throw("findrunnable: netpoll with p")
}
if .m.spinning {
throw("findrunnable: netpoll with spinning")
}
if faketime != 0 {
// When using fake time, just poll.
= 0
}
:= netpoll() // block until new work is available
atomic.Store64(&sched.pollUntil, 0)
atomic.Store64(&sched.lastpoll, uint64(nanotime()))
if faketime != 0 && .empty() {
// Using fake time and nothing is ready; stop M.
// When all M's stop, checkdead will call timejump.
stopm()
goto
}
lock(&sched.lock)
= pidleget()
unlock(&sched.lock)
if == nil {
injectglist(&)
} else {
acquirep()
if !.empty() {
:= .pop()
injectglist(&)
casgstatus(, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(, 0)
}
return , false
}
if {
.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
goto
}
} else if != 0 && netpollinited() {
:= int64(atomic.Load64(&sched.pollUntil))
if == 0 || > {
netpollBreak()
}
}
stopm()
goto
}
// pollWork reports whether there is non-background work this P could
// be doing. This is a fairly lightweight check to be used for
// background work loops, like idle GC. It checks a subset of the
// conditions checked by the actual scheduler.
func () bool {
if sched.runqsize != 0 {
return true
}
:= getg().m.p.ptr()
if !runqempty() {
return true
}
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 {
if := netpoll(0); !.empty() {
injectglist(&)
return true
}
}
return false
}
// wakeNetPoller wakes up the thread sleeping in the network poller if it isn't
// going to wake up before the when argument; or it wakes an idle P to service
// timers and the network poller if there isn't one already.
func ( int64) {
if atomic.Load64(&sched.lastpoll) == 0 {
// In findrunnable we ensure that when polling the pollUntil
// field is either zero or the time to which the current
// poll is expected to run. This can have a spurious wakeup
// but should never miss a wakeup.
:= int64(atomic.Load64(&sched.pollUntil))
if == 0 || > {
netpollBreak()
}
} else {
// There are no threads in the network poller, try to get
// one there so it can handle new timers.
if GOOS != "plan9" { // Temporary workaround - see issue #42303.
wakep()
}
}
}
func () {
:= getg()
if !.m.spinning {
throw("resetspinning: not a spinning m")
}
.m.spinning = false
:= atomic.Xadd(&sched.nmspinning, -1)
if int32() < 0 {
throw("findrunnable: negative nmspinning")
}
// M wakeup policy is deliberately somewhat conservative, so check if we
// need to wakeup another P here. See "Worker thread parking/unparking"
// comment at the top of the file for details.
wakep()
}
// injectglist adds each runnable G on the list to some run queue,
// and clears glist. If there is no current P, they are added to the
// global queue, and up to npidle M's are started to run them.
// Otherwise, for each idle P, this adds a G to the global queue
// and starts an M. Any remaining G's are added to the current P's
// local run queue.
// This may temporarily acquire sched.lock.
// Can run concurrently with GC.
func ( *gList) {
if .empty() {
return
}
if trace.enabled {
for := .head.ptr(); != nil; = .schedlink.ptr() {
traceGoUnpark(, 0)
}
}
// Mark all the goroutines as runnable before we put them
// on the run queues.
:= .head.ptr()
var *g
:= 0
for := ; != nil; = .schedlink.ptr() {
=
++
casgstatus(, _Gwaiting, _Grunnable)
}
// Turn the gList into a gQueue.
var gQueue
.head.set()
.tail.set()
* = gList{}
:= func( int) {
for ; != 0 && sched.npidle != 0; -- {
startm(nil, false)
}
}
:= getg().m.p.ptr()
if == nil {
lock(&sched.lock)
globrunqputbatch(&, int32())
unlock(&sched.lock)
()
return
}
:= int(atomic.Load(&sched.npidle))
var gQueue
var int
for = 0; < && !.empty(); ++ {
:= .pop()
.pushBack()
}
if > 0 {
lock(&sched.lock)
globrunqputbatch(&, int32())
unlock(&sched.lock)
()
-=
}
if !.empty() {
runqputbatch(, &, )
}
}
// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
func () {
:= getg()
if .m.locks != 0 {
throw("schedule: holding locks")
}
if .m.lockedg != 0 {
stoplockedm()
execute(.m.lockedg.ptr(), false) // Never returns.
}
// We should not schedule away from a g that is executing a cgo call,
// since the cgo call is using the m's g0 stack.
if .m.incgo {
throw("schedule: in cgo")
}
:
:= .m.p.ptr()
.preempt = false
if sched.gcwaiting != 0 {
gcstopm()
goto
}
if .runSafePointFn != 0 {
runSafePointFn()
}
// Sanity check: if we are spinning, the run queue should be empty.
// Check this before calling checkTimers, as that might call
// goready to put a ready goroutine on the local run queue.
if .m.spinning && (.runnext != 0 || .runqhead != .runqtail) {
throw("schedule: spinning with local work")
}
checkTimers(, 0)
var *g
var bool
// Normal goroutines will check for need to wakeP in ready,
// but GCworkers and tracereaders will not, so the check must
// be done here instead.
:= false
if trace.enabled || trace.shutdown {
= traceReader()
if != nil {
casgstatus(, _Gwaiting, _Grunnable)
traceGoUnpark(, 0)
= true
}
}
if == nil && gcBlackenEnabled != 0 {
= gcController.findRunnableGCWorker(.m.p.ptr())
= || != nil
}
if == nil {
// Check the global runnable queue once in a while to ensure fairness.
// Otherwise two goroutines can completely occupy the local runqueue
// by constantly respawning each other.
if .m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
lock(&sched.lock)
= globrunqget(.m.p.ptr(), 1)
unlock(&sched.lock)
}
}
if == nil {
, = runqget(.m.p.ptr())
// We can see gp != nil here even if the M is spinning,
// if checkTimers added a local goroutine via goready.
}
if == nil {
, = findrunnable() // blocks until work is available
}
// This thread is going to run a goroutine and is not spinning anymore,
// so if it was marked as spinning we need to reset it now and potentially
// start a new spinning M.
if .m.spinning {
resetspinning()
}
if sched.disable.user && !schedEnabled() {
// Scheduling of this goroutine is disabled. Put it on
// the list of pending runnable goroutines for when we
// re-enable user scheduling and look again.
lock(&sched.lock)
if schedEnabled() {
// Something re-enabled scheduling while we
// were acquiring the lock.
unlock(&sched.lock)
} else {
sched.disable.runnable.pushBack()
sched.disable.n++
unlock(&sched.lock)
goto
}
}
// If about to schedule a not-normal goroutine (a GCworker or tracereader),
// wake a P if there is one.
if {
wakep()
}
if .lockedm != 0 {
// Hands off own p to the locked m,
// then blocks waiting for a new p.
startlockedm()
goto
}
execute(, )
}
// dropg removes the association between m and the current goroutine m->curg (gp for short).
// Typically a caller sets gp's status away from Grunning and then
// immediately calls dropg to finish the job. The caller is also responsible
// for arranging that gp will be restarted using ready at an
// appropriate time. After calling dropg and arranging for gp to be
// readied later, the caller can do other work but eventually should
// call schedule to restart the scheduling of goroutines on this m.
func () {
:= getg()
setMNoWB(&.m.curg.m, nil)
setGNoWB(&.m.curg, nil)
}
// checkTimers runs any timers for the P that are ready.
// If now is not 0 it is the current time.
// It returns the current time or 0 if it is not known,
// and the time when the next timer should run or 0 if there is no next timer,
// and reports whether it ran any timers.
// If the time when the next timer should run is not 0,
// it is always larger than the returned time.
// We pass now in and out to avoid extra calls of nanotime.
//go:yeswritebarrierrec
func ( *p, int64) (, int64, bool) {
// If it's not yet time for the first timer, or the first adjusted
// timer, then there is nothing to do.
:= int64(atomic.Load64(&.timer0When))
:= int64(atomic.Load64(&.timerModifiedEarliest))
if == 0 || ( != 0 && < ) {
=
}
if == 0 {
// No timers to run or adjust.
return , 0, false
}
if == 0 {
= nanotime()
}
if < {
// Next timer is not ready to run, but keep going
// if we would clear deleted timers.
// This corresponds to the condition below where
// we decide whether to call clearDeletedTimers.
if != getg().m.p.ptr() || int(atomic.Load(&.deletedTimers)) <= int(atomic.Load(&.numTimers)/4) {
return , , false
}
}
lock(&.timersLock)
if len(.timers) > 0 {
adjusttimers(, )
for len(.timers) > 0 {
// Note that runtimer may temporarily unlock
// pp.timersLock.
if := runtimer(, ); != 0 {
if > 0 {
=
}
break
}
= true
}
}
// If this is the local P, and there are a lot of deleted timers,
// clear them out. We only do this for the local P to reduce
// lock contention on timersLock.
if == getg().m.p.ptr() && int(atomic.Load(&.deletedTimers)) > len(.timers)/4 {
clearDeletedTimers()
}
unlock(&.timersLock)
return , ,
}
func ( *g, unsafe.Pointer) bool {
unlock((*mutex)())
return true
}
// park continuation on g0.
func ( *g) {
:= getg()
if trace.enabled {
traceGoPark(.m.waittraceev, .m.waittraceskip)
}
casgstatus(, _Grunning, _Gwaiting)
dropg()
if := .m.waitunlockf; != nil {
:= (, .m.waitlock)
.m.waitunlockf = nil
.m.waitlock = nil
if ! {
if trace.enabled {
traceGoUnpark(, 2)
}
casgstatus(, _Gwaiting, _Grunnable)
execute(, true) // Schedule it back, never returns.
}
}
schedule()
}
func ( *g) {
:= readgstatus()
if &^_Gscan != _Grunning {
dumpgstatus()
throw("bad g status")
}
casgstatus(, _Grunning, _Grunnable)
dropg()
lock(&sched.lock)
globrunqput()
unlock(&sched.lock)
schedule()
}
// Gosched continuation on g0.
func ( *g) {
if trace.enabled {
traceGoSched()
}
goschedImpl()
}
// goschedguarded is a forbidden-states-avoided version of gosched_m
func ( *g) {
if !canPreemptM(.m) {
gogo(&.sched) // never return
}
if trace.enabled {
traceGoSched()
}
goschedImpl()
}
func ( *g) {
if trace.enabled {
traceGoPreempt()
}
goschedImpl()
}
// preemptPark parks gp and puts it in _Gpreempted.
//
//go:systemstack
func ( *g) {
if trace.enabled {
traceGoPark(traceEvGoBlock, 0)
}
:= readgstatus()
if &^_Gscan != _Grunning {
dumpgstatus()
throw("bad g status")
}
.waitreason = waitReasonPreempted
// Transition from _Grunning to _Gscan|_Gpreempted. We can't
// be in _Grunning when we dropg because then we'd be running
// without an M, but the moment we're in _Gpreempted,
// something could claim this G before we've fully cleaned it
// up. Hence, we set the scan bit to lock down further
// transitions until we can dropg.
casGToPreemptScan(, _Grunning, _Gscan|_Gpreempted)
dropg()
casfrom_Gscanstatus(, _Gscan|_Gpreempted, _Gpreempted)
schedule()
}
// goyield is like Gosched, but it:
// - emits a GoPreempt trace event instead of a GoSched trace event
// - puts the current G on the runq of the current P instead of the globrunq
func () {
checkTimeouts()
mcall(goyield_m)
}
func ( *g) {
if trace.enabled {
traceGoPreempt()
}
:= .m.p.ptr()
casgstatus(, _Grunning, _Grunnable)
dropg()
runqput(, , false)
schedule()
}
// Finishes execution of the current goroutine.
func () {
if raceenabled {
racegoend()
}
if trace.enabled {
traceGoEnd()
}
mcall(goexit0)
}
// goexit continuation on g0.
func ( *g) {
:= getg()
casgstatus(, _Grunning, _Gdead)
if isSystemGoroutine(, false) {
atomic.Xadd(&sched.ngsys, -1)
}
.m = nil
:= .lockedm != 0
.lockedm = 0
.m.lockedg = 0
.preemptStop = false
.paniconfault = false
._defer = nil // should be true already but just in case.
._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
.writebuf = nil
.waitreason = 0
.param = nil
.labels = nil
.timer = nil
if gcBlackenEnabled != 0 && .gcAssistBytes > 0 {
// Flush assist credit to the global pool. This gives
// better information to pacing if the application is
// rapidly creating an exiting goroutines.
:= float64frombits(atomic.Load64(&gcController.assistWorkPerByte))
:= int64( * float64(.gcAssistBytes))
atomic.Xaddint64(&gcController.bgScanCredit, )
.gcAssistBytes = 0
}
dropg()
if GOARCH == "wasm" { // no threads yet on wasm
gfput(.m.p.ptr(), )
schedule() // never returns
}
if .m.lockedInt != 0 {
print("invalid m->lockedInt = ", .m.lockedInt, "\n")
throw("internal lockOSThread error")
}
gfput(.m.p.ptr(), )
if {
// The goroutine may have locked this thread because
// it put it in an unusual kernel state. Kill it
// rather than returning it to the thread pool.
// Return to mstart, which will release the P and exit
// the thread.
if GOOS != "plan9" { // See golang.org/issue/22227.
gogo(&.m.g0.sched)
} else {
// Clear lockedExt on plan9 since we may end up re-using
// this thread.
.m.lockedExt = 0
}
}
schedule()
}
// save updates getg().sched to refer to pc and sp so that a following
// gogo will restore pc and sp.
//
// save must not have write barriers because invoking a write barrier
// can clobber getg().sched.
//
//go:nosplit
//go:nowritebarrierrec
func (, uintptr) {
:= getg()
.sched.pc =
.sched.sp =
.sched.lr = 0
.sched.ret = 0
.sched.g = guintptr(unsafe.Pointer())
// We need to ensure ctxt is zero, but can't have a write
// barrier here. However, it should always already be zero.
// Assert that.
if .sched.ctxt != nil {
badctxt()
}
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.
//
// Nothing entersyscall calls can split the stack either.
// We cannot safely move the stack during an active call to syscall,
// because we do not know which of the uintptr arguments are
// really pointers (back into the stack).
// In practice, this means that we make the fast path run through
// entersyscall doing no-split things, and the slow path has to use systemstack
// to run bigger things on the system stack.
//
// reentersyscall is the entry point used by cgo callbacks, where explicitly
// saved SP and PC are restored. This is needed when exitsyscall will be called
// from a function further up in the call stack than the parent, as g->syscallsp
// must always point to a valid stack frame. entersyscall below is the normal
// entry point for syscalls, which obtains the SP and PC from the caller.
//
// Syscall tracing:
// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
// If the syscall does not block, that is it, we do not emit any other events.
// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
// when syscall returns we emit traceGoSysExit and when the goroutine starts running
// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
// and we wait for the increment before emitting traceGoSysExit.
// Note that the increment is done even if tracing is not enabled,
// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
//
//go:nosplit
func (, uintptr) {
:= getg()
// Disable preemption because during this function g is in Gsyscall status,
// but can have inconsistent g->sched, do not let GC observe it.
.m.locks++
// Entersyscall must not call any function that might split/grow the stack.
// (See details in comment above.)
// Catch calls that might, by replacing the stack guard with something that
// will trip any stack check and leaving a flag to tell newstack to die.
.stackguard0 = stackPreempt
.throwsplit = true
// Leave SP around for GC and traceback.
save(, )
.syscallsp =
.syscallpc =
casgstatus(, _Grunning, _Gsyscall)
if .syscallsp < .stack.lo || .stack.hi < .syscallsp {
systemstack(func() {
print("entersyscall inconsistent ", hex(.syscallsp), " [", hex(.stack.lo), ",", hex(.stack.hi), "]\n")
throw("entersyscall")
})
}
if trace.enabled {
systemstack(traceGoSysCall)
// systemstack itself clobbers g.sched.{pc,sp} and we might
// need them later when the G is genuinely blocked in a
// syscall
save(, )
}
if atomic.Load(&sched.sysmonwait) != 0 {
systemstack(entersyscall_sysmon)
save(, )
}
if .m.p.ptr().runSafePointFn != 0 {
// runSafePointFn may stack split if run on this stack
systemstack(runSafePointFn)
save(, )
}
.m.syscalltick = .m.p.ptr().syscalltick
.sysblocktraced = true
:= .m.p.ptr()
.m = 0
.m.oldp.set()
.m.p = 0
atomic.Store(&.status, _Psyscall)
if sched.gcwaiting != 0 {
systemstack(entersyscall_gcwait)
save(, )
}
.m.locks--
}
// Standard syscall entry used by the go syscall library and normal cgo calls.
//
// This is exported via linkname to assembly in the syscall package.
//
//go:nosplit
//go:linkname entersyscall
func () {
reentersyscall(getcallerpc(), getcallersp())
}
func () {
lock(&sched.lock)
if atomic.Load(&sched.sysmonwait) != 0 {
atomic.Store(&sched.sysmonwait, 0)
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
}
func () {
:= getg()
:= .m.oldp.ptr()
lock(&sched.lock)
if sched.stopwait > 0 && atomic.Cas(&.status, _Psyscall, _Pgcstop) {
if trace.enabled {
traceGoSysBlock()
traceProcStop()
}
.syscalltick++
if sched.stopwait--; sched.stopwait == 0 {
notewakeup(&sched.stopnote)
}
}
unlock(&sched.lock)
}
// The same as entersyscall(), but with a hint that the syscall is blocking.
//go:nosplit
func () {
:= getg()
.m.locks++ // see comment in entersyscall
.throwsplit = true
.stackguard0 = stackPreempt // see comment in entersyscall
.m.syscalltick = .m.p.ptr().syscalltick
.sysblocktraced = true
.m.p.ptr().syscalltick++
// Leave SP around for GC and traceback.
:= getcallerpc()
:= getcallersp()
save(, )
.syscallsp = .sched.sp
.syscallpc = .sched.pc
if .syscallsp < .stack.lo || .stack.hi < .syscallsp {
:=
:= .sched.sp
:= .syscallsp
systemstack(func() {
print("entersyscallblock inconsistent ", hex(), " ", hex(), " ", hex(), " [", hex(.stack.lo), ",", hex(.stack.hi), "]\n")
throw("entersyscallblock")
})
}
casgstatus(, _Grunning, _Gsyscall)
if .syscallsp < .stack.lo || .stack.hi < .syscallsp {
systemstack(func() {
print("entersyscallblock inconsistent ", hex(), " ", hex(.sched.sp), " ", hex(.syscallsp), " [", hex(.stack.lo), ",", hex(.stack.hi), "]\n")
throw("entersyscallblock")
})
}
systemstack(entersyscallblock_handoff)
// Resave for traceback during blocked call.
save(getcallerpc(), getcallersp())
.m.locks--
}
func () {
if trace.enabled {
traceGoSysCall()
traceGoSysBlock(getg().m.p.ptr())
}
handoffp(releasep())
}
// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
//
// Write barriers are not allowed because our P may have been stolen.
//
// This is exported via linkname to assembly in the syscall package.
//
//go:nosplit
//go:nowritebarrierrec
//go:linkname exitsyscall
func () {
:= getg()
.m.locks++ // see comment in entersyscall
if getcallersp() > .syscallsp {
throw("exitsyscall: syscall frame is no longer valid")
}
.waitsince = 0
:= .m.oldp.ptr()
.m.oldp = 0
if exitsyscallfast() {
if trace.enabled {
if != .m.p.ptr() || .m.syscalltick != .m.p.ptr().syscalltick {
systemstack(traceGoStart)
}
}
// There's a cpu for us, so we can run.
.m.p.ptr().syscalltick++
// We need to cas the status and scan before resuming...
casgstatus(, _Gsyscall, _Grunning)
// Garbage collector isn't running (since we are),
// so okay to clear syscallsp.
.syscallsp = 0
.m.locks--
if .preempt {
// restore the preemption request in case we've cleared it in newstack
.stackguard0 = stackPreempt
} else {
// otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
.stackguard0 = .stack.lo + _StackGuard
}
.throwsplit = false
if sched.disable.user && !schedEnabled() {
// Scheduling of this goroutine is disabled.
Gosched()
}
return
}
.sysexitticks = 0
if trace.enabled {
// Wait till traceGoSysBlock event is emitted.
// This ensures consistency of the trace (the goroutine is started after it is blocked).
for != nil && .syscalltick == .m.syscalltick {
osyield()
}
// We can't trace syscall exit right now because we don't have a P.
// Tracing code can invoke write barriers that cannot run without a P.
// So instead we remember the syscall exit time and emit the event
// in execute when we have a P.
.sysexitticks = cputicks()
}
.m.locks--
// Call the scheduler.
mcall(exitsyscall0)
// Scheduler returned, so we're allowed to run now.
// Delete the syscallsp information that we left for
// the garbage collector during the system call.
// Must wait until now because until gosched returns
// we don't know for sure that the garbage collector
// is not running.
.syscallsp = 0
.m.p.ptr().syscalltick++
.throwsplit = false
}
//go:nosplit
func ( *p) bool {
:= getg()
// Freezetheworld sets stopwait but does not retake P's.
if sched.stopwait == freezeStopWait {
return false
}
// Try to re-acquire the last P.
if != nil && .status == _Psyscall && atomic.Cas(&.status, _Psyscall, _Pidle) {
// There's a cpu for us, so we can run.
wirep()
exitsyscallfast_reacquired()
return true
}
// Try to get any other idle P.
if sched.pidle != 0 {
var bool
systemstack(func() {
= exitsyscallfast_pidle()
if && trace.enabled {
if != nil {
// Wait till traceGoSysBlock event is emitted.
// This ensures consistency of the trace (the goroutine is started after it is blocked).
for .syscalltick == .m.syscalltick {
osyield()
}
}
traceGoSysExit(0)
}
})
if {
return true
}
}
return false
}
// exitsyscallfast_reacquired is the exitsyscall path on which this G
// has successfully reacquired the P it was running on before the
// syscall.
//
//go:nosplit
func () {
:= getg()
if .m.syscalltick != .m.p.ptr().syscalltick {
if trace.enabled {
// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
// traceGoSysBlock for this syscall was already emitted,
// but here we effectively retake the p from the new syscall running on the same p.
systemstack(func() {
// Denote blocking of the new syscall.
traceGoSysBlock(.m.p.ptr())
// Denote completion of the current syscall.
traceGoSysExit(0)
})
}
.m.p.ptr().syscalltick++
}
}
func () bool {
lock(&sched.lock)
:= pidleget()
if != nil && atomic.Load(&sched.sysmonwait) != 0 {
atomic.Store(&sched.sysmonwait, 0)
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
if != nil {
acquirep()
return true
}
return false
}
// exitsyscall slow path on g0.
// Failed to acquire P, enqueue gp as runnable.
//
//go:nowritebarrierrec
func ( *g) {
:= getg()
casgstatus(, _Gsyscall, _Grunnable)
dropg()
lock(&sched.lock)
var *p
if schedEnabled() {
= pidleget()
}
if == nil {
globrunqput()
} else if atomic.Load(&sched.sysmonwait) != 0 {
atomic.Store(&sched.sysmonwait, 0)
notewakeup(&sched.sysmonnote)
}
unlock(&sched.lock)
if != nil {
acquirep()
execute(, false) // Never returns.
}
if .m.lockedg != 0 {
// Wait until another thread schedules gp and so m again.
stoplockedm()
execute(, false) // Never returns.
}
stopm()
schedule() // Never returns.
}
func () {
:= getg().m.curg
// Block signals during a fork, so that the child does not run
// a signal handler before exec if a signal is sent to the process
// group. See issue #18600.
.m.locks++
sigsave(&.m.sigmask)
sigblock(false)
// This function is called before fork in syscall package.
// Code between fork and exec must not allocate memory nor even try to grow stack.
// Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
// runtime_AfterFork will undo this in parent process, but not in child.
.stackguard0 = stackFork
}
// Called from syscall package before fork.
//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
//go:nosplit
func () {
systemstack(beforefork)
}
func () {
:= getg().m.curg
// See the comments in beforefork.
.stackguard0 = .stack.lo + _StackGuard
msigrestore(.m.sigmask)
.m.locks--
}
// Called from syscall package after fork in parent.
//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
//go:nosplit
func () {
systemstack(afterfork)
}
// inForkedChild is true while manipulating signals in the child process.
// This is used to avoid calling libc functions in case we are using vfork.
var inForkedChild bool
// Called from syscall package after fork in child.
// It resets non-sigignored signals to the default handler, and
// restores the signal mask in preparation for the exec.
//
// Because this might be called during a vfork, and therefore may be
// temporarily sharing address space with the parent process, this must
// not change any global variables or calling into C code that may do so.
//
//go:linkname syscall_runtime_AfterForkInChild syscall.runtime_AfterForkInChild
//go:nosplit
//go:nowritebarrierrec
func () {
// It's OK to change the global variable inForkedChild here
// because we are going to change it back. There is no race here,
// because if we are sharing address space with the parent process,
// then the parent process can not be running concurrently.
inForkedChild = true
clearSignalHandlers()
// When we are the child we are the only thread running,
// so we know that nothing else has changed gp.m.sigmask.
msigrestore(getg().m.sigmask)
inForkedChild = false
}
// pendingPreemptSignals is the number of preemption signals
// that have been sent but not received. This is only used on Darwin.
// For #41702.
var pendingPreemptSignals uint32
// Called from syscall package before Exec.
//go:linkname syscall_runtime_BeforeExec syscall.runtime_BeforeExec
func () {
// Prevent thread creation during exec.
execLock.lock()
// On Darwin, wait for all pending preemption signals to
// be received. See issue #41702.
if GOOS == "darwin" || GOOS == "ios" {
for int32(atomic.Load(&pendingPreemptSignals)) > 0 {
osyield()
}
}
}
// Called from syscall package after Exec.
//go:linkname syscall_runtime_AfterExec syscall.runtime_AfterExec
func () {
execLock.unlock()
}
// Allocate a new g, with a stack big enough for stacksize bytes.
func ( int32) *g {
:= new(g)
if >= 0 {
= round2(_StackSystem + )
systemstack(func() {
.stack = stackalloc(uint32())
})
.stackguard0 = .stack.lo + _StackGuard
.stackguard1 = ^uintptr(0)
// Clear the bottom word of the stack. We record g
// there on gsignal stack during VDSO on ARM and ARM64.
*(*uintptr)(unsafe.Pointer(.stack.lo)) = 0
}
return
}
// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
//
// The stack layout of this call is unusual: it assumes that the
// arguments to pass to fn are on the stack sequentially immediately
// after &fn. Hence, they are logically part of newproc's argument
// frame, even though they don't appear in its signature (and can't
// because their types differ between call sites).
//
// This must be nosplit because this stack layout means there are
// untyped arguments in newproc's argument frame. Stack copies won't
// be able to adjust them and stack splits won't be able to copy them.
//
//go:nosplit
func ( int32, *funcval) {
:= add(unsafe.Pointer(&), sys.PtrSize)
:= getg()
:= getcallerpc()
systemstack(func() {
:= newproc1(, , , , )
:= getg().m.p.ptr()
runqput(, , true)
if mainStarted {
wakep()
}
})
}
// Create a new g in state _Grunnable, starting at fn, with narg bytes
// of arguments starting at argp. callerpc is the address of the go
// statement that created this. The caller is responsible for adding
// the new g to the scheduler.
//
// This must run on the system stack because it's the continuation of
// newproc, which cannot split the stack.
//
//go:systemstack
func ( *funcval, unsafe.Pointer, int32, *g, uintptr) *g {
:= getg()
if == nil {
.m.throwing = -1 // do not dump full stacks
throw("go of nil func value")
}
acquirem() // disable preemption because it can be holding p in a local var
:=
= ( + 7) &^ 7
// We could allocate a larger initial stack if necessary.
// Not worth it: this is almost always an error.
// 4*sizeof(uintreg): extra space added below
// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
if >= _StackMin-4*sys.RegSize-sys.RegSize {
throw("newproc: function arguments too large for new goroutine")
}
:= .m.p.ptr()
:= gfget()
if == nil {
= malg(_StackMin)
casgstatus(, _Gidle, _Gdead)
allgadd() // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
}
if .stack.hi == 0 {
throw("newproc1: newg missing stack")
}
if readgstatus() != _Gdead {
throw("newproc1: new g is not Gdead")
}
:= 4*sys.RegSize + uintptr() + sys.MinFrameSize // extra space in case of reads slightly beyond frame
+= - & (sys.SpAlign - 1) // align to spAlign
:= .stack.hi -
:=
if usesLR {
// caller's LR
*(*uintptr)(unsafe.Pointer()) = 0
prepGoExitFrame()
+= sys.MinFrameSize
}
if > 0 {
memmove(unsafe.Pointer(), , uintptr())
// This is a stack-to-stack copy. If write barriers
// are enabled and the source stack is grey (the
// destination is always black), then perform a
// barrier copy. We do this *after* the memmove
// because the destination stack may have garbage on
// it.
if writeBarrier.needed && !.m.curg.gcscandone {
:= findfunc(.fn)
:= (*stackmap)(funcdata(, _FUNCDATA_ArgsPointerMaps))
if .nbit > 0 {
// We're in the prologue, so it's always stack map index 0.
:= stackmapdata(, 0)
bulkBarrierBitmap(, , uintptr(.n)*sys.PtrSize, 0, .bytedata)
}
}
}
memclrNoHeapPointers(unsafe.Pointer(&.sched), unsafe.Sizeof(.sched))
.sched.sp =
.stktopsp =
.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
.sched.g = guintptr(unsafe.Pointer())
gostartcallfn(&.sched, )
.gopc =
.ancestors = saveAncestors()
.startpc = .fn
if .m.curg != nil {
.labels = .m.curg.labels
}
if isSystemGoroutine(, false) {
atomic.Xadd(&sched.ngsys, +1)
}
casgstatus(, _Gdead, _Grunnable)
if .goidcache == .goidcacheend {
// Sched.goidgen is the last allocated id,
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
// At startup sched.goidgen=0, so main goroutine receives goid=1.
.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
.goidcache -= _GoidCacheBatch - 1
.goidcacheend = .goidcache + _GoidCacheBatch
}
.goid = int64(.goidcache)
.goidcache++
if raceenabled {
.racectx = racegostart()
}
if trace.enabled {
traceGoCreate(, .startpc)
}
releasem(.m)
return
}
// saveAncestors copies previous ancestors of the given caller g and
// includes infor for the current caller into a new set of tracebacks for
// a g being created.
func ( *g) *[]ancestorInfo {
// Copy all prior info, except for the root goroutine (goid 0).
if debug.tracebackancestors <= 0 || .goid == 0 {
return nil
}
var []ancestorInfo
if .ancestors != nil {
= *.ancestors
}
:= int32(len()) + 1
if > debug.tracebackancestors {
= debug.tracebackancestors
}
:= make([]ancestorInfo, )
copy([1:], )
var [_TracebackMaxFrames]uintptr
:= gcallers(, 0, [:])
:= make([]uintptr, )
copy(, [:])
[0] = ancestorInfo{
pcs: ,
goid: .goid,
gopc: .gopc,
}
:= new([]ancestorInfo)
* =
return
}
// Put on gfree list.
// If local list is too long, transfer a batch to the global list.
func ( *p, *g) {
if readgstatus() != _Gdead {
throw("gfput: bad status (not Gdead)")
}
:= .stack.hi - .stack.lo
if != _FixedStack {
// non-standard stack size - free it.
stackfree(.stack)
.stack.lo = 0
.stack.hi = 0
.stackguard0 = 0
}
.gFree.push()
.gFree.n++
if .gFree.n >= 64 {
lock(&sched.gFree.lock)
for .gFree.n >= 32 {
.gFree.n--
= .gFree.pop()
if .stack.lo == 0 {
sched.gFree.noStack.push()
} else {
sched.gFree.stack.push()
}
sched.gFree.n++
}
unlock(&sched.gFree.lock)
}
}
// Get from gfree list.
// If local list is empty, grab a batch from global list.
func ( *p) *g {
:
if .gFree.empty() && (!sched.gFree.stack.empty() || !sched.gFree.noStack.empty()) {
lock(&sched.gFree.lock)
// Move a batch of free Gs to the P.
for .gFree.n < 32 {
// Prefer Gs with stacks.
:= sched.gFree.stack.pop()
if == nil {
= sched.gFree.noStack.pop()
if == nil {
break
}
}
sched.gFree.n--
.gFree.push()
.gFree.n++
}
unlock(&sched.gFree.lock)
goto
}
:= .gFree.pop()
if == nil {
return nil
}
.gFree.n--
if .stack.lo == 0 {
// Stack was deallocated in gfput. Allocate a new one.
systemstack(func() {
.stack = stackalloc(_FixedStack)
})
.stackguard0 = .stack.lo + _StackGuard
} else {
if raceenabled {
racemalloc(unsafe.Pointer(.stack.lo), .stack.hi-.stack.lo)
}
if msanenabled {
msanmalloc(unsafe.Pointer(.stack.lo), .stack.hi-.stack.lo)
}
}
return
}
// Purge all cached G's from gfree list to the global list.
func ( *p) {
lock(&sched.gFree.lock)
for !.gFree.empty() {
:= .gFree.pop()
.gFree.n--
if .stack.lo == 0 {
sched.gFree.noStack.push()
} else {
sched.gFree.stack.push()
}
sched.gFree.n++
}
unlock(&sched.gFree.lock)
}
// Breakpoint executes a breakpoint trap.
func () {
breakpoint()
}
// dolockOSThread is called by LockOSThread and lockOSThread below
// after they modify m.locked. Do not allow preemption during this call,
// or else the m might be different in this function than in the caller.
//go:nosplit
func () {
if GOARCH == "wasm" {
return // no threads on wasm yet
}
:= getg()
.m.lockedg.set()
.lockedm.set(.m)
}
//go:nosplit
// LockOSThread wires the calling goroutine to its current operating system thread.
// The calling goroutine will always execute in that thread,
// and no other goroutine will execute in it,
// until the calling goroutine has made as many calls to
// UnlockOSThread as to LockOSThread.
// If the calling goroutine exits without unlocking the thread,
// the thread will be terminated.
//
// All init functions are run on the startup thread. Calling LockOSThread
// from an init function will cause the main function to be invoked on
// that thread.
//
// A goroutine should call LockOSThread before calling OS services or
// non-Go library functions that depend on per-thread state.
func () {
if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" {
// If we need to start a new thread from the locked
// thread, we need the template thread. Start it now
// while we're in a known-good state.
startTemplateThread()
}
:= getg()
.m.lockedExt++
if .m.lockedExt == 0 {
.m.lockedExt--
panic("LockOSThread nesting overflow")
}
dolockOSThread()
}
//go:nosplit
func () {
getg().m.lockedInt++
dolockOSThread()
}
// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
// after they update m->locked. Do not allow preemption during this call,
// or else the m might be in different in this function than in the caller.
//go:nosplit
func () {
if GOARCH == "wasm" {
return // no threads on wasm yet
}
:= getg()
if .m.lockedInt != 0 || .m.lockedExt != 0 {
return
}
.m.lockedg = 0
.lockedm = 0
}
//go:nosplit
// UnlockOSThread undoes an earlier call to LockOSThread.
// If this drops the number of active LockOSThread calls on the
// calling goroutine to zero, it unwires the calling goroutine from
// its fixed operating system thread.
// If there are no active LockOSThread calls, this is a no-op.
//
// Before calling UnlockOSThread, the caller must ensure that the OS
// thread is suitable for running other goroutines. If the caller made
// any permanent changes to the state of the thread that would affect
// other goroutines, it should not call this function and thus leave
// the goroutine locked to the OS thread until the goroutine (and
// hence the thread) exits.
func () {
:= getg()
if .m.lockedExt == 0 {
return
}
.m.lockedExt--
dounlockOSThread()
}
//go:nosplit
func () {
:= getg()
if .m.lockedInt == 0 {
systemstack(badunlockosthread)
}
.m.lockedInt--
dounlockOSThread()
}
func () {
throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
}
func () int32 {
:= int32(atomic.Loaduintptr(&allglen)) - sched.gFree.n - int32(atomic.Load(&sched.ngsys))
for , := range allp {
-= .gFree.n
}
// All these variables can be changed concurrently, so the result can be inconsistent.
// But at least the current goroutine is running.
if < 1 {
= 1
}
return
}
func () int32 {
return int32(sched.mnext - sched.nmfreed)
}
var prof struct {
signalLock uint32
hz int32
}
func () { () }
func () { () }
func () { () }
func () { () }
func () { () }
func () { () }
// Called if we receive a SIGPROF signal.
// Called by the signal handler, may run during STW.
//go:nowritebarrierrec
func (, , uintptr, *g, *m) {
if prof.hz == 0 {
return
}
// If mp.profilehz is 0, then profiling is not enabled for this thread.
// We must check this to avoid a deadlock between setcpuprofilerate
// and the call to cpuprof.add, below.
if != nil && .profilehz == 0 {
return
}
// On mips{,le}, 64bit atomics are emulated with spinlocks, in
// runtime/internal/atomic. If SIGPROF arrives while the program is inside
// the critical section, it creates a deadlock (when writing the sample).
// As a workaround, create a counter of SIGPROFs while in critical section
// to store the count, and pass it to sigprof.add() later when SIGPROF is
// received from somewhere else (with _LostSIGPROFDuringAtomic64 as pc).
if GOARCH == "mips" || GOARCH == "mipsle" || GOARCH == "arm" {
if := findfunc(); .valid() {
if hasPrefix(funcname(), "runtime/internal/atomic") {
cpuprof.lostAtomic++
return
}
}
}
// Profiling runs concurrently with GC, so it must not allocate.
// Set a trap in case the code does allocate.
// Note that on windows, one thread takes profiles of all the
// other threads, so mp is usually not getg().m.
// In fact mp may not even be stopped.
// See golang.org/issue/17165.
getg().m.mallocing++
// Define that a "user g" is a user-created goroutine, and a "system g"
// is one that is m->g0 or m->gsignal.
//
// We might be interrupted for profiling halfway through a
// goroutine switch. The switch involves updating three (or four) values:
// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
// because once it gets updated the new g is running.
//
// When switching from a user g to a system g, LR is not considered live,
// so the update only affects g, SP, and PC. Since PC must be last, there
// the possible partial transitions in ordinary execution are (1) g alone is updated,
// (2) both g and SP are updated, and (3) SP alone is updated.
// If SP or g alone is updated, we can detect the partial transition by checking
// whether the SP is within g's stack bounds. (We could also require that SP
// be changed only after g, but the stack bounds check is needed by other
// cases, so there is no need to impose an additional requirement.)
//
// There is one exceptional transition to a system g, not in ordinary execution.
// When a signal arrives, the operating system starts the signal handler running
// with an updated PC and SP. The g is updated last, at the beginning of the
// handler. There are two reasons this is okay. First, until g is updated the
// g and SP do not match, so the stack bounds check detects the partial transition.
// Second, signal handlers currently run with signals disabled, so a profiling
// signal cannot arrive during the handler.
//
// When switching from a system g to a user g, there are three possibilities.
//
// First, it may be that the g switch has no PC update, because the SP
// either corresponds to a user g throughout (as in asmcgocall)
// or because it has been arranged to look like a user g frame
// (as in cgocallback). In this case, since the entire
// transition is a g+SP update, a partial transition updating just one of
// those will be detected by the stack bounds check.
//
// Second, when returning from a signal handler, the PC and SP updates
// are performed by the operating system in an atomic update, so the g
// update must be done before them. The stack bounds check detects
// the partial transition here, and (again) signal handlers run with signals
// disabled, so a profiling signal cannot arrive then anyway.
//
// Third, the common case: it may be that the switch updates g, SP, and PC
// separately. If the PC is within any of the functions that does this,
// we don't ask for a traceback. C.F. the function setsSP for more about this.
//
// There is another apparently viable approach, recorded here in case
// the "PC within setsSP function" check turns out not to be usable.
// It would be possible to delay the update of either g or SP until immediately
// before the PC update instruction. Then, because of the stack bounds check,
// the only problematic interrupt point is just before that PC update instruction,
// and the sigprof handler can detect that instruction and simulate stepping past
// it in order to reach a consistent state. On ARM, the update of g must be made
// in two places (in R10 and also in a TLS slot), so the delayed update would
// need to be the SP update. The sigprof handler must read the instruction at
// the current PC and if it was the known instruction (for example, JMP BX or
// MOV R2, PC), use that other register in place of the PC value.
// The biggest drawback to this solution is that it requires that we can tell
// whether it's safe to read from the memory pointed at by PC.
// In a correct program, we can test PC == nil and otherwise read,
// but if a profiling signal happens at the instant that a program executes
// a bad jump (before the program manages to handle the resulting fault)
// the profiling handler could fault trying to read nonexistent memory.
//
// To recap, there are no constraints on the assembly being used for the
// transition. We simply require that g and SP match and that the PC is not
// in gogo.
:= true
if == nil || < .stack.lo || .stack.hi < || setsSP() || ( != nil && .vdsoSP != 0) {
= false
}
var [maxCPUProfStack]uintptr
:= 0
if .ncgo > 0 && .curg != nil && .curg.syscallpc != 0 && .curg.syscallsp != 0 {
:= 0
// Check cgoCallersUse to make sure that we are not
// interrupting other code that is fiddling with
// cgoCallers. We are running in a signal handler
// with all signals blocked, so we don't have to worry
// about any other code interrupting us.
if atomic.Load(&.cgoCallersUse) == 0 && .cgoCallers != nil && .cgoCallers[0] != 0 {
for < len(.cgoCallers) && .cgoCallers[] != 0 {
++
}
copy([:], .cgoCallers[:])
.cgoCallers[0] = 0
}
// Collect Go stack that leads to the cgo call.
= gentraceback(.curg.syscallpc, .curg.syscallsp, 0, .curg, 0, &[], len()-, nil, nil, 0)
if > 0 {
+=
}
} else if {
= gentraceback(, , , , 0, &[0], len(), nil, nil, _TraceTrap|_TraceJumpStack)
}
if <= 0 {
// Normal traceback is impossible or has failed.
// See if it falls into several common cases.
= 0
if usesLibcall() && .libcallg != 0 && .libcallpc != 0 && .libcallsp != 0 {
// Libcall, i.e. runtime syscall on windows.
// Collect Go stack that leads to the call.
= gentraceback(.libcallpc, .libcallsp, 0, .libcallg.ptr(), 0, &[0], len(), nil, nil, 0)
}
if == 0 && != nil && .vdsoSP != 0 {
= gentraceback(.vdsoPC, .vdsoSP, 0, , 0, &[0], len(), nil, nil, _TraceTrap|_TraceJumpStack)
}
if == 0 {
// If all of the above has failed, account it against abstract "System" or "GC".
= 2
if inVDSOPage() {
= funcPC(_VDSO) + sys.PCQuantum
} else if > firstmoduledata.etext {
// "ExternalCode" is better than "etext".
= funcPC(_ExternalCode) + sys.PCQuantum
}
[0] =
if .preemptoff != "" {
[1] = funcPC(_GC) + sys.PCQuantum
} else {
[1] = funcPC(_System) + sys.PCQuantum
}
}
}
if prof.hz != 0 {
cpuprof.add(, [:])
}
getg().m.mallocing--
}
// If the signal handler receives a SIGPROF signal on a non-Go thread,
// it tries to collect a traceback into sigprofCallers.
// sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback.
var sigprofCallers cgoCallers
var sigprofCallersUse uint32
// sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
// and the signal handler collected a stack trace in sigprofCallers.
// When this is called, sigprofCallersUse will be non-zero.
// g is nil, and what we can do is very limited.
//go:nosplit
//go:nowritebarrierrec
func () {
if prof.hz != 0 {
:= 0
for < len(sigprofCallers) && sigprofCallers[] != 0 {
++
}
cpuprof.addNonGo(sigprofCallers[:])
}
atomic.Store(&sigprofCallersUse, 0)
}
// sigprofNonGoPC is called when a profiling signal arrived on a
// non-Go thread and we have a single PC value, not a stack trace.
// g is nil, and what we can do is very limited.
//go:nosplit
//go:nowritebarrierrec
func ( uintptr) {
if prof.hz != 0 {
:= []uintptr{
,
funcPC(_ExternalCode) + sys.PCQuantum,
}
cpuprof.addNonGo()
}
}
// Reports whether a function will set the SP
// to an absolute value. Important that
// we don't traceback when these are at the bottom
// of the stack since we can't be sure that we will
// find the caller.
//
// If the function is not on the bottom of the stack
// we assume that it will have set it up so that traceback will be consistent,
// either by being a traceback terminating function
// or putting one on the stack at the right offset.
func ( uintptr) bool {
:= findfunc()
if !.valid() {
// couldn't find the function for this PC,
// so assume the worst and stop traceback
return true
}
switch .funcID {
case funcID_gogo, funcID_systemstack, funcID_mcall, funcID_morestack:
return true
}
return false
}
// setcpuprofilerate sets the CPU profiling rate to hz times per second.
// If hz <= 0, setcpuprofilerate turns off CPU profiling.
func ( int32) {
// Force sane arguments.
if < 0 {
= 0
}
// Disable preemption, otherwise we can be rescheduled to another thread
// that has profiling enabled.
:= getg()
.m.locks++
// Stop profiler on this thread so that it is safe to lock prof.
// if a profiling signal came in while we had prof locked,
// it would deadlock.
setThreadCPUProfiler(0)
for !atomic.Cas(&prof.signalLock, 0, 1) {
osyield()
}
if prof.hz != {
setProcessCPUProfiler()
prof.hz =
}
atomic.Store(&prof.signalLock, 0)
lock(&sched.lock)
sched.profilehz =
unlock(&sched.lock)
if != 0 {
setThreadCPUProfiler()
}
.m.locks--
}
// init initializes pp, which may be a freshly allocated p or a
// previously destroyed p, and transitions it to status _Pgcstop.
func ( *p) ( int32) {
.id =
.status = _Pgcstop
.sudogcache = .sudogbuf[:0]
for := range .deferpool {
.deferpool[] = .deferpoolbuf[][:0]
}
.wbBuf.reset()
if .mcache == nil {
if == 0 {
if mcache0 == nil {
throw("missing mcache?")
}
// Use the bootstrap mcache0. Only one P will get
// mcache0: the one with ID 0.
.mcache = mcache0
} else {
.mcache = allocmcache()
}
}
if raceenabled && .raceprocctx == 0 {
if == 0 {
.raceprocctx = raceprocctx0
raceprocctx0 = 0 // bootstrap
} else {
.raceprocctx = raceproccreate()
}
}
lockInit(&.timersLock, lockRankTimers)
// This P may get timers when it starts running. Set the mask here
// since the P may not go through pidleget (notably P 0 on startup).
timerpMask.set()
// Similarly, we may not go through pidleget before this P starts
// running if it is P 0 on startup.
idlepMask.clear()
}
// destroy releases all of the resources associated with pp and
// transitions it to status _Pdead.
//
// sched.lock must be held and the world must be stopped.
func ( *p) () {
assertLockHeld(&sched.lock)
assertWorldStopped()
// Move all runnable goroutines to the global queue
for .runqhead != .runqtail {
// Pop from tail of local queue
.runqtail--
:= .runq[.runqtail%uint32(len(.runq))].ptr()
// Push onto head of global queue
globrunqputhead()
}
if .runnext != 0 {
globrunqputhead(.runnext.ptr())
.runnext = 0
}
if len(.timers) > 0 {
:= getg().m.p.ptr()
// The world is stopped, but we acquire timersLock to
// protect against sysmon calling timeSleepUntil.
// This is the only case where we hold the timersLock of
// more than one P, so there are no deadlock concerns.
lock(&.timersLock)
lock(&.timersLock)
moveTimers(, .timers)
.timers = nil
.numTimers = 0
.adjustTimers = 0
.deletedTimers = 0
atomic.Store64(&.timer0When, 0)
unlock(&.timersLock)
unlock(&.timersLock)
}
// Flush p's write barrier buffer.
if gcphase != _GCoff {
wbBufFlush1()
.gcw.dispose()
}
for := range .sudogbuf {
.sudogbuf[] = nil
}
.sudogcache = .sudogbuf[:0]
for := range .deferpool {
for := range .deferpoolbuf[] {
.deferpoolbuf[][] = nil
}
.deferpool[] = .deferpoolbuf[][:0]
}
systemstack(func() {
for := 0; < .mspancache.len; ++ {
// Safe to call since the world is stopped.
mheap_.spanalloc.free(unsafe.Pointer(.mspancache.buf[]))
}
.mspancache.len = 0
lock(&mheap_.lock)
.pcache.flush(&mheap_.pages)
unlock(&mheap_.lock)
})
freemcache(.mcache)
.mcache = nil
gfpurge()
traceProcFree()
if raceenabled {
if .timerRaceCtx != 0 {
// The race detector code uses a callback to fetch
// the proc context, so arrange for that callback
// to see the right thing.
// This hack only works because we are the only
// thread running.
:= getg().m
:= .p.ptr()
.p.set()
racectxend(.timerRaceCtx)
.timerRaceCtx = 0
.p.set()
}
raceprocdestroy(.raceprocctx)
.raceprocctx = 0
}
.gcAssistTime = 0
.status = _Pdead
}
// Change number of processors.
//
// sched.lock must be held, and the world must be stopped.
//
// gcworkbufs must not be being modified by either the GC or the write barrier
// code, so the GC must not be running if the number of Ps actually changes.
//
// Returns list of Ps with local work, they need to be scheduled by the caller.
func ( int32) *p {
assertLockHeld(&sched.lock)
assertWorldStopped()
:= gomaxprocs
if < 0 || <= 0 {
throw("procresize: invalid arg")
}
if trace.enabled {
traceGomaxprocs()
}
// update statistics
:= nanotime()
if sched.procresizetime != 0 {
sched.totaltime += int64() * ( - sched.procresizetime)
}
sched.procresizetime =
:= ( + 31) / 32
// Grow allp if necessary.
if > int32(len(allp)) {
// Synchronize with retake, which could be running
// concurrently since it doesn't run on a P.
lock(&allpLock)
if <= int32(cap(allp)) {
allp = allp[:]
} else {
:= make([]*p, )
// Copy everything up to allp's cap so we
// never lose old allocated Ps.
copy(, allp[:cap(allp)])
allp =
}
if <= int32(cap(idlepMask)) {
idlepMask = idlepMask[:]
timerpMask = timerpMask[:]
} else {
:= make([]uint32, )
// No need to copy beyond len, old Ps are irrelevant.
copy(, idlepMask)
idlepMask =
:= make([]uint32, )
copy(, timerpMask)
timerpMask =
}
unlock(&allpLock)
}
// initialize new P's
for := ; < ; ++ {
:= allp[]
if == nil {
= new(p)
}
.init()
atomicstorep(unsafe.Pointer(&allp[]), unsafe.Pointer())
}
:= getg()
if .m.p != 0 && .m.p.ptr().id < {
// continue to use the current P
.m.p.ptr().status = _Prunning
.m.p.ptr().mcache.prepareForSweep()
} else {
// release the current P and acquire allp[0].
//
// We must do this before destroying our current P
// because p.destroy itself has write barriers, so we
// need to do that from a valid P.
if .m.p != 0 {
if trace.enabled {
// Pretend that we were descheduled
// and then scheduled again to keep
// the trace sane.
traceGoSched()
traceProcStop(.m.p.ptr())
}
.m.p.ptr().m = 0
}
.m.p = 0
:= allp[0]
.m = 0
.status = _Pidle
acquirep()
if trace.enabled {
traceGoStart()
}
}
// g.m.p is now set, so we no longer need mcache0 for bootstrapping.
mcache0 = nil
// release resources from unused P's
for := ; < ; ++ {
:= allp[]
.destroy()
// can't free P itself because it can be referenced by an M in syscall
}
// Trim allp.
if int32(len(allp)) != {
lock(&allpLock)
allp = allp[:]
idlepMask = idlepMask[:]
timerpMask = timerpMask[:]
unlock(&allpLock)
}
var *p
for := - 1; >= 0; -- {
:= allp[]
if .m.p.ptr() == {
continue
}
.status = _Pidle
if runqempty() {
pidleput()
} else {
.m.set(mget())
.link.set()
=
}
}
stealOrder.reset(uint32())
var *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
atomic.Store((*uint32)(unsafe.Pointer()), uint32())
return
}
// Associate p and the current m.
//
// This function is allowed to have write barriers even if the caller
// isn't because it immediately acquires _p_.
//
//go:yeswritebarrierrec
func ( *p) {
// Do the part that isn't allowed to have write barriers.
wirep()
// Have p; write barriers now allowed.
// Perform deferred mcache flush before this P can allocate
// from a potentially stale mcache.
.mcache.prepareForSweep()
if trace.enabled {
traceProcStart()
}
}
// wirep is the first step of acquirep, which actually associates the
// current M to _p_. This is broken out so we can disallow write
// barriers for this part, since we don't yet have a P.
//
//go:nowritebarrierrec
//go:nosplit
func ( *p) {
:= getg()
if .m.p != 0 {
throw("wirep: already in go")
}
if .m != 0 || .status != _Pidle {
:= int64(0)
if .m != 0 {
= .m.ptr().id
}
print("wirep: p->m=", .m, "(", , ") p->status=", .status, "\n")
throw("wirep: invalid p state")
}
.m.p.set()
.m.set(.m)
.status = _Prunning
}
// Disassociate p and the current m.
func () *p {
:= getg()
if .m.p == 0 {
throw("releasep: invalid arg")
}
:= .m.p.ptr()
if .m.ptr() != .m || .status != _Prunning {
print("releasep: m=", .m, " m->p=", .m.p.ptr(), " p->m=", hex(.m), " p->status=", .status, "\n")
throw("releasep: invalid p state")
}
if trace.enabled {
traceProcStop(.m.p.ptr())
}
.m.p = 0
.m = 0
.status = _Pidle
return
}
func ( int32) {
lock(&sched.lock)
sched.nmidlelocked +=
if > 0 {
checkdead()
}
unlock(&sched.lock)
}
// Check for deadlock situation.
// The check is based on number of running M's, if 0 -> deadlock.
// sched.lock must be held.
func () {
assertLockHeld(&sched.lock)
// For -buildmode=c-shared or -buildmode=c-archive it's OK if
// there are no running goroutines. The calling program is
// assumed to be running.
if islibrary || isarchive {
return
}
// If we are dying because of a signal caught on an already idle thread,
// freezetheworld will cause all running threads to block.
// And runtime will essentially enter into deadlock state,
// except that there is a thread that will call exit soon.
if panicking > 0 {
return
}
// If we are not running under cgo, but we have an extra M then account
// for it. (It is possible to have an extra M on Windows without cgo to
// accommodate callbacks created by syscall.NewCallback. See issue #6751
// for details.)
var int32
if !iscgo && cgoHasExtraM {
:= lockextra(true)
:= extraMCount > 0
unlockextra()
if {
= 1
}
}
:= mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys
if > {
return
}
if < 0 {
print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n")
throw("checkdead: inconsistent counts")
}
:= 0
lock(&allglock)
for := 0; < len(allgs); ++ {
:= allgs[]
if isSystemGoroutine(, false) {
continue
}
:= readgstatus()
switch &^ _Gscan {
case _Gwaiting,
_Gpreempted:
++
case _Grunnable,
_Grunning,
_Gsyscall:
print("runtime: checkdead: find g ", .goid, " in status ", , "\n")
throw("checkdead: runnable g")
}
}
unlock(&allglock)
if == 0 { // possible if main goroutine calls runtime·Goexit()
unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang
throw("no goroutines (main called runtime.Goexit) - deadlock!")
}
// Maybe jump time forward for playground.
if faketime != 0 {
, := timeSleepUntil()
if != nil {
faketime =
for := &sched.pidle; * != 0; = &(*).ptr().link {
if (*).ptr() == {
* = .link
break
}
}
:= mget()
if == nil {
// There should always be a free M since
// nothing is running.
throw("checkdead: no m for timer")
}
.nextp.set()
notewakeup(&.park)
return
}
}
// There are no goroutines running, so we can look at the P's.
for , := range allp {
if len(.timers) > 0 {
return
}
}
getg().m.throwing = -1 // do not dump full stacks
unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang
throw("all goroutines are asleep - deadlock!")
}
// forcegcperiod is the maximum time in nanoseconds between garbage
// collections. If we go this long without a garbage collection, one
// is forced to run.
//
// This is a variable for testing purposes. It normally doesn't change.
var forcegcperiod int64 = 2 * 60 * 1e9
// Always runs without a P, so write barriers are not allowed.
//
//go:nowritebarrierrec
func () {
lock(&sched.lock)
sched.nmsys++
checkdead()
unlock(&sched.lock)
// For syscall_runtime_doAllThreadsSyscall, sysmon is
// sufficiently up to participate in fixups.
atomic.Store(&sched.sysmonStarting, 0)
:= int64(0)
:= 0 // how many cycles in succession we had not wokeup somebody
:= uint32(0)
for {
if == 0 { // start with 20us sleep...
= 20
} else if > 50 { // start doubling the sleep after 1ms...
*= 2
}
if > 10*1000 { // up to 10ms
= 10 * 1000
}
usleep()
mDoFixup()
// sysmon should not enter deep sleep if schedtrace is enabled so that
// it can print that information at the right time.
//
// It should also not enter deep sleep if there are any active P's so
// that it can retake P's from syscalls, preempt long running G's, and
// poll the network if all P's are busy for long stretches.
//
// It should wakeup from deep sleep if any P's become active either due
// to exiting a syscall or waking up due to a timer expiring so that it
// can resume performing those duties. If it wakes from a syscall it
// resets idle and delay as a bet that since it had retaken a P from a
// syscall before, it may need to do it again shortly after the
// application starts work again. It does not reset idle when waking
// from a timer to avoid adding system load to applications that spend
// most of their time sleeping.
:= nanotime()
if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
lock(&sched.lock)
if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
:= false
, := timeSleepUntil()
if > {
atomic.Store(&sched.sysmonwait, 1)
unlock(&sched.lock)
// Make wake-up period small enough
// for the sampling to be correct.
:= forcegcperiod / 2
if - < {
= -
}
:= >= osRelaxMinNS
if {
osRelax(true)
}
= notetsleep(&sched.sysmonnote, )
mDoFixup()
if {
osRelax(false)
}
lock(&sched.lock)
atomic.Store(&sched.sysmonwait, 0)
noteclear(&sched.sysmonnote)
}
if {
= 0
= 20
}
}
unlock(&sched.lock)
}
lock(&sched.sysmonlock)
// Update now in case we blocked on sysmonnote or spent a long time
// blocked on schedlock or sysmonlock above.
= nanotime()
// trigger libc interceptors if needed
if *cgo_yield != nil {
asmcgocall(*cgo_yield, nil)
}
// poll network if not polled for more than 10ms
:= int64(atomic.Load64(&sched.lastpoll))
if netpollinited() && != 0 && +10*1000*1000 < {
atomic.Cas64(&sched.lastpoll, uint64(), uint64())
:= netpoll(0) // non-blocking - returns list of goroutines
if !.empty() {
// Need to decrement number of idle locked M's
// (pretending that one more is running) before injectglist.
// Otherwise it can lead to the following situation:
// injectglist grabs all P's but before it starts M's to run the P's,
// another M returns from syscall, finishes running its G,
// observes that there is no work to do and no other running M's
// and reports deadlock.
incidlelocked(-1)
injectglist(&)
incidlelocked(1)
}
}
mDoFixup()
if GOOS == "netbsd" {
// netpoll is responsible for waiting for timer
// expiration, so we typically don't have to worry
// about starting an M to service timers. (Note that
// sleep for timeSleepUntil above simply ensures sysmon
// starts running again when that timer expiration may
// cause Go code to run again).
//
// However, netbsd has a kernel bug that sometimes
// misses netpollBreak wake-ups, which can lead to
// unbounded delays servicing timers. If we detect this
// overrun, then startm to get something to handle the
// timer.
//
// See issue 42515 and
// https://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=50094.
if , := timeSleepUntil(); < {
startm(nil, false)
}
}
if atomic.Load(&scavenge.sysmonWake) != 0 {
// Kick the scavenger awake if someone requested it.
wakeScavenger()
}
// retake P's blocked in syscalls
// and preempt long running G's
if retake() != 0 {
= 0
} else {
++
}
// check if we need to force a GC
if := (gcTrigger{kind: gcTriggerTime, now: }); .test() && atomic.Load(&forcegc.idle) != 0 {
lock(&forcegc.lock)
forcegc.idle = 0
var gList
.push(forcegc.g)
injectglist(&)
unlock(&forcegc.lock)
}
if debug.schedtrace > 0 && +int64(debug.schedtrace)*1000000 <= {
=
schedtrace(debug.scheddetail > 0)
}
unlock(&sched.sysmonlock)
}
}
type sysmontick struct {
schedtick uint32
schedwhen int64
syscalltick uint32
syscallwhen int64
}
// forcePreemptNS is the time slice given to a G before it is
// preempted.
const forcePreemptNS = 10 * 1000 * 1000 // 10ms
func ( int64) uint32 {
:= 0
// Prevent allp slice changes. This lock will be completely
// uncontended unless we're already stopping the world.
lock(&allpLock)
// We can't use a range loop over allp because we may
// temporarily drop the allpLock. Hence, we need to re-fetch
// allp each time around the loop.
for := 0; < len(allp); ++ {
:= allp[]
if == nil {
// This can happen if procresize has grown
// allp but not yet created new Ps.
continue
}
:= &.sysmontick
:= .status
:= false
if == _Prunning || == _Psyscall {
// Preempt G if it's running for too long.
:= int64(.schedtick)
if int64(.schedtick) != {
.schedtick = uint32()
.schedwhen =
} else if .schedwhen+forcePreemptNS <= {
preemptone()
// In case of syscall, preemptone() doesn't
// work, because there is no M wired to P.
= true
}
}
if == _Psyscall {
// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
:= int64(.syscalltick)
if ! && int64(.syscalltick) != {
.syscalltick = uint32()
.syscallwhen =
continue
}
// On the one hand we don't want to retake Ps if there is no other work to do,
// but on the other hand we want to retake them eventually
// because they can prevent the sysmon thread from deep sleep.
if runqempty() && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && .syscallwhen+10*1000*1000 > {
continue
}
// Drop allpLock so we can take sched.lock.
unlock(&allpLock)
// Need to decrement number of idle locked M's
// (pretending that one more is running) before the CAS.
// Otherwise the M from which we retake can exit the syscall,
// increment nmidle and report deadlock.
incidlelocked(-1)
if atomic.Cas(&.status, , _Pidle) {
if trace.enabled {
traceGoSysBlock()
traceProcStop()
}
++
.syscalltick++
handoffp()
}
incidlelocked(1)
lock(&allpLock)
}
}
unlock(&allpLock)
return uint32()
}
// Tell all goroutines that they have been preempted and they should stop.
// This function is purely best-effort. It can fail to inform a goroutine if a
// processor just started running it.
// No locks need to be held.
// Returns true if preemption request was issued to at least one goroutine.
func () bool {
:= false
for , := range allp {
if .status != _Prunning {
continue
}
if preemptone() {
= true
}
}
return
}
// Tell the goroutine running on processor P to stop.
// This function is purely best-effort. It can incorrectly fail to inform the
// goroutine. It can send inform the wrong goroutine. Even if it informs the
// correct goroutine, that goroutine might ignore the request if it is
// simultaneously executing newstack.
// No lock needs to be held.
// Returns true if preemption request was issued.
// The actual preemption will happen at some point in the future
// and will be indicated by the gp->status no longer being
// Grunning
func ( *p) bool {
:= .m.ptr()
if == nil || == getg().m {
return false
}
:= .curg
if == nil || == .g0 {
return false
}
.preempt = true
// Every call in a go routine checks for stack overflow by
// comparing the current stack pointer to gp->stackguard0.
// Setting gp->stackguard0 to StackPreempt folds
// preemption into the normal stack overflow check.
.stackguard0 = stackPreempt
// Request an async preemption of this P.
if preemptMSupported && debug.asyncpreemptoff == 0 {
.preempt = true
preemptM()
}
return true
}
var starttime int64
func ( bool) {
:= nanotime()
if starttime == 0 {
starttime =
}
lock(&sched.lock)
print("SCHED ", (-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
if {
print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
}
// We must be careful while reading data from P's, M's and G's.
// Even if we hold schedlock, most data can be changed concurrently.
// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
for , := range allp {
:= .m.ptr()
:= atomic.Load(&.runqhead)
:= atomic.Load(&.runqtail)
if {
:= int64(-1)
if != nil {
= .id
}
print(" P", , ": status=", .status, " schedtick=", .schedtick, " syscalltick=", .syscalltick, " m=", , " runqsize=", -, " gfreecnt=", .gFree.n, " timerslen=", len(.timers), "\n")
} else {
// In non-detailed mode format lengths of per-P run queues as:
// [len1 len2 len3 len4]
print(" ")
if == 0 {
print("[")
}
print( - )
if == len(allp)-1 {
print("]\n")
}
}
}
if ! {
unlock(&sched.lock)
return
}
for := allm; != nil; = .alllink {
:= .p.ptr()
:= .curg
:= .lockedg.ptr()
:= int32(-1)
if != nil {
= .id
}
:= int64(-1)
if != nil {
= .goid
}
:= int64(-1)
if != nil {
= .goid
}
print(" M", .id, ": p=", , " curg=", , " mallocing=", .mallocing, " throwing=", .throwing, " preemptoff=", .preemptoff, ""+" locks=", .locks, " dying=", .dying, " spinning=", .spinning, " blocked=", .blocked, " lockedg=", , "\n")
}
lock(&allglock)
for := 0; < len(allgs); ++ {
:= allgs[]
:= .m
:= .lockedm.ptr()
:= int64(-1)
if != nil {
= .id
}
:= int64(-1)
if != nil {
= .id
}
print(" G", .goid, ": status=", readgstatus(), "(", .waitreason.String(), ") m=", , " lockedm=", , "\n")
}
unlock(&allglock)
unlock(&sched.lock)
}
// schedEnableUser enables or disables the scheduling of user
// goroutines.
//
// This does not stop already running user goroutines, so the caller
// should first stop the world when disabling user goroutines.
func ( bool) {
lock(&sched.lock)
if sched.disable.user == ! {
unlock(&sched.lock)
return
}
sched.disable.user = !
if {
:= sched.disable.n
sched.disable.n = 0
globrunqputbatch(&sched.disable.runnable, )
unlock(&sched.lock)
for ; != 0 && sched.npidle != 0; -- {
startm(nil, false)
}
} else {
unlock(&sched.lock)
}
}
// schedEnabled reports whether gp should be scheduled. It returns
// false is scheduling of gp is disabled.
//
// sched.lock must be held.
func ( *g) bool {
assertLockHeld(&sched.lock)
if sched.disable.user {
return isSystemGoroutine(, true)
}
return true
}
// Put mp on midle list.
// sched.lock must be held.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func ( *m) {
assertLockHeld(&sched.lock)
.schedlink = sched.midle
sched.midle.set()
sched.nmidle++
checkdead()
}
// Try to get an m from midle list.
// sched.lock must be held.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func () *m {
assertLockHeld(&sched.lock)
:= sched.midle.ptr()
if != nil {
sched.midle = .schedlink
sched.nmidle--
}
return
}
// Put gp on the global runnable queue.
// sched.lock must be held.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func ( *g) {
assertLockHeld(&sched.lock)
sched.runq.pushBack()
sched.runqsize++
}
// Put gp at the head of the global runnable queue.
// sched.lock must be held.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func ( *g) {
assertLockHeld(&sched.lock)
sched.runq.push()
sched.runqsize++
}
// Put a batch of runnable goroutines on the global runnable queue.
// This clears *batch.
// sched.lock must be held.
func ( *gQueue, int32) {
assertLockHeld(&sched.lock)
sched.runq.pushBackAll(*)
sched.runqsize +=
* = gQueue{}
}
// Try get a batch of G's from the global runnable queue.
// sched.lock must be held.
func ( *p, int32) *g {
assertLockHeld(&sched.lock)
if sched.runqsize == 0 {
return nil
}
:= sched.runqsize/gomaxprocs + 1
if > sched.runqsize {
= sched.runqsize
}
if > 0 && > {
=
}
if > int32(len(.runq))/2 {
= int32(len(.runq)) / 2
}
sched.runqsize -=
:= sched.runq.pop()
--
for ; > 0; -- {
:= sched.runq.pop()
runqput(, , false)
}
return
}
// pMask is an atomic bitstring with one bit per P.
type pMask []uint32
// read returns true if P id's bit is set.
func ( pMask) ( uint32) bool {
:= / 32
:= uint32(1) << ( % 32)
return (atomic.Load(&[]) & ) != 0
}
// set sets P id's bit.
func ( pMask) ( int32) {
:= / 32
:= uint32(1) << ( % 32)
atomic.Or(&[], )
}
// clear clears P id's bit.
func ( pMask) ( int32) {
:= / 32
:= uint32(1) << ( % 32)
atomic.And(&[], ^)
}
// updateTimerPMask clears pp's timer mask if it has no timers on its heap.
//
// Ideally, the timer mask would be kept immediately consistent on any timer
// operations. Unfortunately, updating a shared global data structure in the
// timer hot path adds too much overhead in applications frequently switching
// between no timers and some timers.
//
// As a compromise, the timer mask is updated only on pidleget / pidleput. A
// running P (returned by pidleget) may add a timer at any time, so its mask
// must be set. An idle P (passed to pidleput) cannot add new timers while
// idle, so if it has no timers at that time, its mask may be cleared.
//
// Thus, we get the following effects on timer-stealing in findrunnable:
//
// * Idle Ps with no timers when they go idle are never checked in findrunnable
// (for work- or timer-stealing; this is the ideal case).
// * Running Ps must always be checked.
// * Idle Ps whose timers are stolen must continue to be checked until they run
// again, even after timer expiration.
//
// When the P starts running again, the mask should be set, as a timer may be
// added at any time.
//
// TODO(prattmic): Additional targeted updates may improve the above cases.
// e.g., updating the mask when stealing a timer.
func ( *p) {
if atomic.Load(&.numTimers) > 0 {
return
}
// Looks like there are no timers, however another P may transiently
// decrement numTimers when handling a timerModified timer in
// checkTimers. We must take timersLock to serialize with these changes.
lock(&.timersLock)
if atomic.Load(&.numTimers) == 0 {
timerpMask.clear(.id)
}
unlock(&.timersLock)
}
// pidleput puts p to on the _Pidle list.
//
// This releases ownership of p. Once sched.lock is released it is no longer
// safe to use p.
//
// sched.lock must be held.
//
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func ( *p) {
assertLockHeld(&sched.lock)
if !runqempty() {
throw("pidleput: P has non-empty run queue")
}
updateTimerPMask() // clear if there are no timers.
idlepMask.set(.id)
.link = sched.pidle
sched.pidle.set()
atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
}
// pidleget tries to get a p from the _Pidle list, acquiring ownership.
//
// sched.lock must be held.
//
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func () *p {
assertLockHeld(&sched.lock)
:= sched.pidle.ptr()
if != nil {
// Timer may get added at any time now.
timerpMask.set(.id)
idlepMask.clear(.id)
sched.pidle = .link
atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
}
return
}
// runqempty reports whether _p_ has no Gs on its local run queue.
// It never returns true spuriously.
func ( *p) bool {
// Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail,
// 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext.
// Simply observing that runqhead == runqtail and then observing that runqnext == nil
// does not mean the queue is empty.
for {
:= atomic.Load(&.runqhead)
:= atomic.Load(&.runqtail)
:= atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&.runnext)))
if == atomic.Load(&.runqtail) {
return == && == 0
}
}
}
// To shake out latent assumptions about scheduling order,
// we introduce some randomness into scheduling decisions
// when running with the race detector.
// The need for this was made obvious by changing the
// (deterministic) scheduling order in Go 1.5 and breaking
// many poorly-written tests.
// With the randomness here, as long as the tests pass
// consistently with -race, they shouldn't have latent scheduling
// assumptions.
const randomizeScheduler = raceenabled
// runqput tries to put g on the local runnable queue.
// If next is false, runqput adds g to the tail of the runnable queue.
// If next is true, runqput puts g in the _p_.runnext slot.
// If the run queue is full, runnext puts g on the global queue.
// Executed only by the owner P.
func ( *p, *g, bool) {
if randomizeScheduler && && fastrand()%2 == 0 {
= false
}
if {
:
:= .runnext
if !.runnext.cas(, guintptr(unsafe.Pointer())) {
goto
}
if == 0 {
return
}
// Kick the old runnext out to the regular run queue.
= .ptr()
}
:
:= atomic.LoadAcq(&.runqhead) // load-acquire, synchronize with consumers
:= .runqtail
if - < uint32(len(.runq)) {
.runq[%uint32(len(.runq))].set()
atomic.StoreRel(&.runqtail, +1) // store-release, makes the item available for consumption
return
}
if runqputslow(, , , ) {
return
}
// the queue is not full, now the put above must succeed
goto
}
// Put g and a batch of work from local runnable queue on global queue.
// Executed only by the owner P.
func ( *p, *g, , uint32) bool {
var [len(.runq)/2 + 1]*g
// First, grab a batch from local queue.
:= -
= / 2
if != uint32(len(.runq)/2) {
throw("runqputslow: queue is not full")
}
for := uint32(0); < ; ++ {
[] = .runq[(+)%uint32(len(.runq))].ptr()
}
if !atomic.CasRel(&.runqhead, , +) { // cas-release, commits consume
return false
}
[] =
if randomizeScheduler {
for := uint32(1); <= ; ++ {
:= fastrandn( + 1)
[], [] = [], []
}
}
// Link the goroutines.
for := uint32(0); < ; ++ {
[].schedlink.set([+1])
}
var gQueue
.head.set([0])
.tail.set([])
// Now put the batch on global queue.
lock(&sched.lock)
globrunqputbatch(&, int32(+1))
unlock(&sched.lock)
return true
}
// runqputbatch tries to put all the G's on q on the local runnable queue.
// If the queue is full, they are put on the global queue; in that case
// this will temporarily acquire the scheduler lock.
// Executed only by the owner P.
func ( *p, *gQueue, int) {
:= atomic.LoadAcq(&.runqhead)
:= .runqtail
:= uint32(0)
for !.empty() && - < uint32(len(.runq)) {
:= .pop()
.runq[%uint32(len(.runq))].set()
++
++
}
-= int()
if randomizeScheduler {
:= func( uint32) uint32 {
return (.runqtail + ) % uint32(len(.runq))
}
for := uint32(1); < ; ++ {
:= fastrandn( + 1)
.runq[()], .runq[()] = .runq[()], .runq[()]
}
}
atomic.StoreRel(&.runqtail, )
if !.empty() {
lock(&sched.lock)
globrunqputbatch(, int32())
unlock(&sched.lock)
}
}
// Get g from local runnable queue.
// If inheritTime is true, gp should inherit the remaining time in the
// current time slice. Otherwise, it should start a new time slice.
// Executed only by the owner P.
func ( *p) ( *g, bool) {
// If there's a runnext, it's the next G to run.
for {
:= .runnext
if == 0 {
break
}
if .runnext.cas(, 0) {
return .ptr(), true
}
}
for {
:= atomic.LoadAcq(&.runqhead) // load-acquire, synchronize with other consumers
:= .runqtail
if == {
return nil, false
}
:= .runq[%uint32(len(.runq))].ptr()
if atomic.CasRel(&.runqhead, , +1) { // cas-release, commits consume
return , false
}
}
}
// Grabs a batch of goroutines from _p_'s runnable queue into batch.
// Batch is a ring buffer starting at batchHead.
// Returns number of grabbed goroutines.
// Can be executed by any P.
func ( *p, *[256]guintptr, uint32, bool) uint32 {
for {
:= atomic.LoadAcq(&.runqhead) // load-acquire, synchronize with other consumers
:= atomic.LoadAcq(&.runqtail) // load-acquire, synchronize with the producer
:= -
= - /2
if == 0 {
if {
// Try to steal from _p_.runnext.
if := .runnext; != 0 {
if .status == _Prunning {
// Sleep to ensure that _p_ isn't about to run the g
// we are about to steal.
// The important use case here is when the g running
// on _p_ ready()s another g and then almost
// immediately blocks. Instead of stealing runnext
// in this window, back off to give _p_ a chance to
// schedule runnext. This will avoid thrashing gs
// between different Ps.
// A sync chan send/recv takes ~50ns as of time of
// writing, so 3us gives ~50x overshoot.
if GOOS != "windows" {
usleep(3)
} else {
// On windows system timer granularity is
// 1-15ms, which is way too much for this
// optimization. So just yield.
osyield()
}
}
if !.runnext.cas(, 0) {
continue
}
[%uint32(len())] =
return 1
}
}
return 0
}
if > uint32(len(.runq)/2) { // read inconsistent h and t
continue
}
for := uint32(0); < ; ++ {
:= .runq[(+)%uint32(len(.runq))]
[(+)%uint32(len())] =
}
if atomic.CasRel(&.runqhead, , +) { // cas-release, commits consume
return
}
}
}
// Steal half of elements from local runnable queue of p2
// and put onto local runnable queue of p.
// Returns one of the stolen elements (or nil if failed).
func (, *p, bool) *g {
:= .runqtail
:= runqgrab(, &.runq, , )
if == 0 {
return nil
}
--
:= .runq[(+)%uint32(len(.runq))].ptr()
if == 0 {
return
}
:= atomic.LoadAcq(&.runqhead) // load-acquire, synchronize with consumers
if -+ >= uint32(len(.runq)) {
throw("runqsteal: runq overflow")
}
atomic.StoreRel(&.runqtail, +) // store-release, makes the item available for consumption
return
}
// A gQueue is a dequeue of Gs linked through g.schedlink. A G can only
// be on one gQueue or gList at a time.
type gQueue struct {
head guintptr
tail guintptr
}
// empty reports whether q is empty.
func ( *gQueue) () bool {
return .head == 0
}
// push adds gp to the head of q.
func ( *gQueue) ( *g) {
.schedlink = .head
.head.set()
if .tail == 0 {
.tail.set()
}
}
// pushBack adds gp to the tail of q.
func ( *gQueue) ( *g) {
.schedlink = 0
if .tail != 0 {
.tail.ptr().schedlink.set()
} else {
.head.set()
}
.tail.set()
}
// pushBackAll adds all Gs in l2 to the tail of q. After this q2 must
// not be used.
func ( *gQueue) ( gQueue) {
if .tail == 0 {
return
}
.tail.ptr().schedlink = 0
if .tail != 0 {
.tail.ptr().schedlink = .head
} else {
.head = .head
}
.tail = .tail
}
// pop removes and returns the head of queue q. It returns nil if
// q is empty.
func ( *gQueue) () *g {
:= .head.ptr()
if != nil {
.head = .schedlink
if .head == 0 {
.tail = 0
}
}
return
}
// popList takes all Gs in q and returns them as a gList.
func ( *gQueue) () gList {
:= gList{.head}
* = gQueue{}
return
}
// A gList is a list of Gs linked through g.schedlink. A G can only be
// on one gQueue or gList at a time.
type gList struct {
head guintptr
}
// empty reports whether l is empty.
func ( *gList) () bool {
return .head == 0
}
// push adds gp to the head of l.
func ( *gList) ( *g) {
.schedlink = .head
.head.set()
}
// pushAll prepends all Gs in q to l.
func ( *gList) ( gQueue) {
if !.empty() {
.tail.ptr().schedlink = .head
.head = .head
}
}
// pop removes and returns the head of l. If l is empty, it returns nil.
func ( *gList) () *g {
:= .head.ptr()
if != nil {
.head = .schedlink
}
return
}
//go:linkname setMaxThreads runtime/debug.setMaxThreads
func ( int) ( int) {
lock(&sched.lock)
= int(sched.maxmcount)
if > 0x7fffffff { // MaxInt32
sched.maxmcount = 0x7fffffff
} else {
sched.maxmcount = int32()
}
checkmcount()
unlock(&sched.lock)
return
}
func ( string) bool {
:= sys.Goexperiment
for != "" {
:= ""
:= bytealg.IndexByteString(, ',')
if < 0 {
, = , ""
} else {
, = [:], [+1:]
}
if == {
return true
}
if len() > 2 && [:2] == "no" && [2:] == {
return false
}
}
return false
}
//go:nosplit
func () int {
:= getg()
:= .m
.locks++
return int(.p.ptr().id)
}
//go:nosplit
func () {
:= getg()
.m.locks--
}
//go:linkname sync_runtime_procPin sync.runtime_procPin
//go:nosplit
func () int {
return procPin()
}
//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
//go:nosplit
func () {
procUnpin()
}
//go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
//go:nosplit
func () int {
return procPin()
}
//go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
//go:nosplit
func () {
procUnpin()
}
// Active spinning for sync.Mutex.
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
//go:nosplit
func ( int) bool {
// sync.Mutex is cooperative, so we are conservative with spinning.
// Spin only few times and only if running on a multicore machine and
// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
// As opposed to runtime mutex we don't do passive spinning here,
// because there can be work on global runq or on other Ps.
if >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
return false
}
if := getg().m.p.ptr(); !runqempty() {
return false
}
return true
}
//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit
func () {
procyield(active_spin_cnt)
}
var stealOrder randomOrder
// randomOrder/randomEnum are helper types for randomized work stealing.
// They allow to enumerate all Ps in different pseudo-random orders without repetitions.
// The algorithm is based on the fact that if we have X such that X and GOMAXPROCS
// are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration.
type randomOrder struct {
count uint32
coprimes []uint32
}
type randomEnum struct {
i uint32
count uint32
pos uint32
inc uint32
}
func ( *randomOrder) ( uint32) {
.count =
.coprimes = .coprimes[:0]
for := uint32(1); <= ; ++ {
if gcd(, ) == 1 {
.coprimes = append(.coprimes, )
}
}
}
func ( *randomOrder) ( uint32) randomEnum {
return randomEnum{
count: .count,
pos: % .count,
inc: .coprimes[%uint32(len(.coprimes))],
}
}
func ( *randomEnum) () bool {
return .i == .count
}
func ( *randomEnum) () {
.i++
.pos = (.pos + .inc) % .count
}
func ( *randomEnum) () uint32 {
return .pos
}
func (, uint32) uint32 {
for != 0 {
, = , %
}
return
}
// An initTask represents the set of initializations that need to be done for a package.
// Keep in sync with ../../test/initempty.go:initTask
type initTask struct {
// TODO: pack the first 3 fields more tightly?
state uintptr // 0 = uninitialized, 1 = in progress, 2 = done
ndeps uintptr
nfns uintptr
// followed by ndeps instances of an *initTask, one per package depended on
// followed by nfns pcs, one per init function to run
}
// inittrace stores statistics for init functions which are
// updated by malloc and newproc when active is true.
var inittrace tracestat
type tracestat struct {
active bool // init tracing activation status
id int64 // init go routine id
allocs uint64 // heap allocations
bytes uint64 // heap allocated bytes
}
func ( *initTask) {
switch .state {
case 2: // fully initialized
return
case 1: // initialization in progress
throw("recursive call during initialization - linker skew")
default: // not initialized yet
.state = 1 // initialization in progress
for := uintptr(0); < .ndeps; ++ {
:= add(unsafe.Pointer(), (3+)*sys.PtrSize)
:= *(**initTask)()
()
}
if .nfns == 0 {
.state = 2 // initialization done
return
}
var (
int64
tracestat
)
if inittrace.active {
= nanotime()
// Load stats non-atomically since tracinit is updated only by this init go routine.
= inittrace
}
:= add(unsafe.Pointer(), (3+.ndeps)*sys.PtrSize)
for := uintptr(0); < .nfns; ++ {
:= add(, *sys.PtrSize)
:= *(*func())(unsafe.Pointer(&))
()
}
if inittrace.active {
:= nanotime()
// Load stats non-atomically since tracinit is updated only by this init go routine.
:= inittrace
:= funcpkgpath(findfunc(funcPC()))
var [24]byte
print("init ", , " @")
print(string(fmtNSAsMS([:], uint64(-runtimeInitTime))), " ms, ")
print(string(fmtNSAsMS([:], uint64(-))), " ms clock, ")
print(string(itoa([:], .bytes-.bytes)), " bytes, ")
print(string(itoa([:], .allocs-.allocs)), " allocs")
print("\n")
}
.state = 2 // initialization done
}
}