Source File
mcache.go
Belonging Package
runtime
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
)
// Per-thread (in Go, per-P) cache for small objects.
// This includes a small object cache and local allocation stats.
// No locking needed because it is per-thread (per-P).
//
// mcaches are allocated from non-GC'd memory, so any heap pointers
// must be specially handled.
//
//go:notinheap
type mcache struct {
// The following members are accessed on every malloc,
// so they are grouped here for better caching.
nextSample uintptr // trigger heap sample after allocating this many bytes
scanAlloc uintptr // bytes of scannable heap allocated
// Allocator cache for tiny objects w/o pointers.
// See "Tiny allocator" comment in malloc.go.
// tiny points to the beginning of the current tiny block, or
// nil if there is no current tiny block.
//
// tiny is a heap pointer. Since mcache is in non-GC'd memory,
// we handle it by clearing it in releaseAll during mark
// termination.
//
// tinyAllocs is the number of tiny allocations performed
// by the P that owns this mcache.
tiny uintptr
tinyoffset uintptr
tinyAllocs uintptr
// The rest is not accessed on every malloc.
alloc [numSpanClasses]*mspan // spans to allocate from, indexed by spanClass
stackcache [_NumStackOrders]stackfreelist
// flushGen indicates the sweepgen during which this mcache
// was last flushed. If flushGen != mheap_.sweepgen, the spans
// in this mcache are stale and need to the flushed so they
// can be swept. This is done in acquirep.
flushGen uint32
}
// A gclink is a node in a linked list of blocks, like mlink,
// but it is opaque to the garbage collector.
// The GC does not trace the pointers during collection,
// and the compiler does not emit write barriers for assignments
// of gclinkptr values. Code should store references to gclinks
// as gclinkptr, not as *gclink.
type gclink struct {
next gclinkptr
}
// A gclinkptr is a pointer to a gclink, but it is opaque
// to the garbage collector.
type gclinkptr uintptr
// ptr returns the *gclink form of p.
// The result should be used for accessing fields, not stored
// in other data structures.
func ( gclinkptr) () *gclink {
return (*gclink)(unsafe.Pointer())
}
type stackfreelist struct {
list gclinkptr // linked list of free stacks
size uintptr // total size of stacks in list
}
// dummy mspan that contains no free objects.
var emptymspan mspan
func () *mcache {
var *mcache
systemstack(func() {
lock(&mheap_.lock)
= (*mcache)(mheap_.cachealloc.alloc())
.flushGen = mheap_.sweepgen
unlock(&mheap_.lock)
})
for := range .alloc {
.alloc[] = &emptymspan
}
.nextSample = nextSample()
return
}
// freemcache releases resources associated with this
// mcache and puts the object onto a free list.
//
// In some cases there is no way to simply release
// resources, such as statistics, so donate them to
// a different mcache (the recipient).
func ( *mcache) {
systemstack(func() {
.releaseAll()
stackcache_clear()
// NOTE(rsc,rlh): If gcworkbuffree comes back, we need to coordinate
// with the stealing of gcworkbufs during garbage collection to avoid
// a race where the workbuf is double-freed.
// gcworkbuffree(c.gcworkbuf)
lock(&mheap_.lock)
mheap_.cachealloc.free(unsafe.Pointer())
unlock(&mheap_.lock)
})
}
// getMCache is a convenience function which tries to obtain an mcache.
//
// Returns nil if we're not bootstrapping or we don't have a P. The caller's
// P must not change, so we must be in a non-preemptible state.
func () *mcache {
// Grab the mcache, since that's where stats live.
:= getg().m.p.ptr()
var *mcache
if == nil {
// We will be called without a P while bootstrapping,
// in which case we use mcache0, which is set in mallocinit.
// mcache0 is cleared when bootstrapping is complete,
// by procresize.
= mcache0
} else {
= .mcache
}
return
}
// refill acquires a new span of span class spc for c. This span will
// have at least one free object. The current span in c must be full.
//
// Must run in a non-preemptible context since otherwise the owner of
// c could change.
func ( *mcache) ( spanClass) {
// Return the current cached span to the central lists.
:= .alloc[]
if uintptr(.allocCount) != .nelems {
throw("refill of span with free space remaining")
}
if != &emptymspan {
// Mark this span as no longer cached.
if .sweepgen != mheap_.sweepgen+3 {
throw("bad sweepgen in refill")
}
mheap_.central[].mcentral.uncacheSpan()
}
// Get a new cached span from the central lists.
= mheap_.central[].mcentral.cacheSpan()
if == nil {
throw("out of memory")
}
if uintptr(.allocCount) == .nelems {
throw("span has no free space")
}
// Indicate that this span is cached and prevent asynchronous
// sweeping in the next sweep phase.
.sweepgen = mheap_.sweepgen + 3
// Assume all objects from this span will be allocated in the
// mcache. If it gets uncached, we'll adjust this.
:= memstats.heapStats.acquire()
atomic.Xadduintptr(&.smallAllocCount[.sizeclass()], uintptr(.nelems)-uintptr(.allocCount))
memstats.heapStats.release()
// Update heap_live with the same assumption.
:= uintptr(.allocCount) * .elemsize
atomic.Xadd64(&memstats.heap_live, int64(.npages*pageSize)-int64())
// Flush tinyAllocs.
if == tinySpanClass {
atomic.Xadd64(&memstats.tinyallocs, int64(.tinyAllocs))
.tinyAllocs = 0
}
// While we're here, flush scanAlloc, since we have to call
// revise anyway.
atomic.Xadd64(&memstats.heap_scan, int64(.scanAlloc))
.scanAlloc = 0
if trace.enabled {
// heap_live changed.
traceHeapAlloc()
}
if gcBlackenEnabled != 0 {
// heap_live and heap_scan changed.
gcController.revise()
}
.alloc[] =
}
// allocLarge allocates a span for a large object.
func ( *mcache) ( uintptr, bool, bool) *mspan {
if +_PageSize < {
throw("out of memory")
}
:= >> _PageShift
if &_PageMask != 0 {
++
}
// Deduct credit for this span allocation and sweep if
// necessary. mHeap_Alloc will also sweep npages, so this only
// pays the debt down to npage pages.
deductSweepCredit(*_PageSize, )
:= makeSpanClass(0, )
:= mheap_.alloc(, , )
if == nil {
throw("out of memory")
}
:= memstats.heapStats.acquire()
atomic.Xadduintptr(&.largeAlloc, *pageSize)
atomic.Xadduintptr(&.largeAllocCount, 1)
memstats.heapStats.release()
// Update heap_live and revise pacing if needed.
atomic.Xadd64(&memstats.heap_live, int64(*pageSize))
if trace.enabled {
// Trace that a heap alloc occurred because heap_live changed.
traceHeapAlloc()
}
if gcBlackenEnabled != 0 {
gcController.revise()
}
// Put the large span in the mcentral swept list so that it's
// visible to the background sweeper.
mheap_.central[].mcentral.fullSwept(mheap_.sweepgen).push()
.limit = .base() +
heapBitsForAddr(.base()).initSpan()
return
}
func ( *mcache) () {
// Take this opportunity to flush scanAlloc.
atomic.Xadd64(&memstats.heap_scan, int64(.scanAlloc))
.scanAlloc = 0
:= mheap_.sweepgen
for := range .alloc {
:= .alloc[]
if != &emptymspan {
// Adjust nsmallalloc in case the span wasn't fully allocated.
:= uintptr(.nelems) - uintptr(.allocCount)
:= memstats.heapStats.acquire()
atomic.Xadduintptr(&.smallAllocCount[spanClass().sizeclass()], -)
memstats.heapStats.release()
if .sweepgen != +1 {
// refill conservatively counted unallocated slots in heap_live.
// Undo this.
//
// If this span was cached before sweep, then
// heap_live was totally recomputed since
// caching this span, so we don't do this for
// stale spans.
atomic.Xadd64(&memstats.heap_live, -int64()*int64(.elemsize))
}
// Release the span to the mcentral.
mheap_.central[].mcentral.uncacheSpan()
.alloc[] = &emptymspan
}
}
// Clear tinyalloc pool.
.tiny = 0
.tinyoffset = 0
atomic.Xadd64(&memstats.tinyallocs, int64(.tinyAllocs))
.tinyAllocs = 0
// Updated heap_scan and possible heap_live.
if gcBlackenEnabled != 0 {
gcController.revise()
}
}
// prepareForSweep flushes c if the system has entered a new sweep phase
// since c was populated. This must happen between the sweep phase
// starting and the first allocation from c.
func ( *mcache) () {
// Alternatively, instead of making sure we do this on every P
// between starting the world and allocating on that P, we
// could leave allocate-black on, allow allocation to continue
// as usual, use a ragged barrier at the beginning of sweep to
// ensure all cached spans are swept, and then disable
// allocate-black. However, with this approach it's difficult
// to avoid spilling mark bits into the *next* GC cycle.
:= mheap_.sweepgen
if .flushGen == {
return
} else if .flushGen != -2 {
println("bad flushGen", .flushGen, "in prepareForSweep; sweepgen", )
throw("bad flushGen")
}
.releaseAll()
stackcache_clear()
atomic.Store(&.flushGen, mheap_.sweepgen) // Synchronizes with gcStart
}